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Overview

Al technologies may reach the threshold of rapid, open-ended, recursive improvement
before we are prepared to manage the challenges posed by the emergence of super-
intelligent Al agents.! If this situation occurs, then it may become critically important to
employ methods for reducing Al risks until more comprehensive solutions are both
understood and ready for implementation. If methods for risk reduction can contrib-
ute to those comprehensive solutions, so much the better.

A foundational technique for reducing Al risks would apply capabilities for recurs-
ive Al improvement to a particular task: a process of “intelligence distillation” in which
the metric for Al improvement is minimization of the description length of imple-
mentations that are themselves capable of open-ended recursive improvement.

By separating knowledge from learning capability, intelligence distillation can sup-
port strategies for implementing specialised, low-risk, yet superintelligent problem-
solvers: Distillation can constrain initial information content; knowledge metering can
constrain the information input during learning; checkpoint/restart protocols can con-
strain the retention of information provided in conjunction with tasks. Building on
these methods and their functional products, sets of problem-solvers with superintel-
ligent domain competencies could potentially be combined to implement highly capable
systems that lack characteristics necessary for strong, risky Al agency. An appendix
outlines how this strategy might be applied to implement superintelligent, human-
interactive engineering systems with minimal risk.

Distillation/specialisation/composition strategies raise wide-ranging questions
regarding the potential scope of safe applications of superintelligence-enabled Al cap-
abilities. Because distillation-enabled strategies may offer practical means for mitigat-
ing Al risks while pursuing ambitious applications, further studies in this area could
strengthen links between the Al-development and Al-safety research communities.

1 Nick Bostrom'’s recent book, Superintelligence: Paths, Dangers, Strategies (Oxford University
Press, 2014), provides the broadest and deepest exploration of these challenges to date; the
present document is intended for an audience that has a general familiarity with the considera-
tions and problems addressed in Superintelligence.



1 Transitional Al safety: addressing the difficult case

In Superintelligence (Oxford University Press, 2014), Nick Bostrom explores a range of
profound problems posed by the potential emergence of superintelligent Al agency,
and suggests that adequate solutions may be long delayed. If Al technologies reach the
threshold of rapid, open-ended, recursive improvement before we have full solutions
to the problems explored in Superintelligence, then interim strategies for shaping and
managing emerging superintelligence could be crucial.

In the reference problem-situation assumed here:

1) Al technology has reached the threshold of rapid, open-ended,
recursive improvement.

2) The content and mechanisms of emerging superintelligent systems
are effectively opaque,

3) Ongoing pressures for Al applications ensure that superintelligence
will be widely exploited, and

4) No fully adequate solution to the problems posed by superintelligent agency
is ready for implementation.

Conditions (1) through (4) are challenging, yet they are compatible with potentially
powerful and accessible risk-reduction strategies. (These strategies could of course be
applied under less challenging circumstances.)

In considering the force of point (3), one must keep in mind the ongoing pressures
to apply advanced Al capabilities, including the sheer momentum of competitive
research and development. Applications of superintelligence could not only be extra-
ordinarily profitable, but could greatly augment scientific knowledge, global material
wealth, human health, and perhaps even genuine security. Because it would be unwise
to assume that emerging superintelligence will not be applied, there is good reason to
seek means for implementing low-risk applications.

Disclaimer: After a talk on this topic at the Future of Humanity Institute on 4 Dec 2014,
Anders Sandberg suggested that [ write a brief summary, but although this document fol-
lows the content of the talk, it neither minimizes the description length of the concepts,
nor adds the apparatus of scholarly citation.

Historical note: My concerns regarding Al risk, which center on the challenges of long-
term Al governance, date from the inception of my studies of advanced molecular techno-
logies, ca. 1977. 1 recall a later conversation with Marvin Minsky (then chairing my doctoral
committee, ca. 1990) that sharpened my understanding of some of the crucial considera-
tions: Regarding goal hierarchies, Marvin remarked that the high-level task of learning
language is, for an infant, a subgoal of getting a drink of water, and that converting the
resources of the universe into computers is a potential subgoal of a machine attempting
to play perfect chess. The ideas presented here emerged as subgoals of proposed strateg-
ies for managing untrustworthy Al systems that I outlined to Marvin around the same
time. He suggested that [ do a write up; procrastination ensued.



From a risk-reduction perspective, transitional Al safety measures offer several
potential benefits:

1) They can extend the time available for studying the fundamental problems
of long-term Al control;

2) They can enable experimentation with operational and potentially surprising
Al technologies; and, perhaps crucially,

3) They may enable the application of superintelligent problem-solving capabilities
to the problem of managing superintelligence.

1.1 High and low-risk Al paths compared

Table 1 contrasts a potential Al development path that leads to severe Al-agent risk
with a proposed path that would develop and apply superintelligent capabilities by
means that could potentially obviate these risks.

Table 1. Potential paths to unsafe Al agents vs. low-risk Al tools:

A potential pathto A potential path
unsafe Al agents to low-risk Al tools

Open-ended, unguided, Measured, repeatable,
recursive improvement recursive improvement

results in the emergence yields minimal-content
of a superintelligent system; superintelligent learners

the superintelligence gains  that enable systems tutored
broad world-knowledge, with specialised knowledge;

develops explicit, these systems explore
long-range goals, solutions to given problems,

develops plans for  perform computations
action with global scope, using assigned resources,

employs effective means complete assigned tasks
to implement its plans. by delivering answers.

Note that an essential aspect of part (1) of the low-risk path amounts to standard
research practice: storing backups (or checkpoints) of system state during develop-
ment, and recording the steps that lead to the next interesting result. Together, these
practices enable retracing and varying development paths while probing the charac-
teristics of intermediate states.

The following discussion will assume that, along paths toward potentially risky
superintelligence, the capacity for recursive improvement precedes strong Al-agent
risk, or at a minimum, that this condition can be established by means of controlled
redevelopment of recursive improvement capabilities along alternative paths from an
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Figure 1. Schematic organization of MDL distillation to produce
(and then expand) compact, general-purpose learning systems.

early and non-problematic checkpoint. This condition ensures that control strategies
can be applied in a non-adversarial context.

2 Knowledge, learning, and MDL distillation

Along the low-risk path outlined in Table 1, step (2) is pivotal: It calls for the produc-
tion of a particular kind of superintelligence, a superintelligent learner with minimal
information content. How might this be accomplished?

By assumption, the reference problem situation contains Al systems capable of imple-
menting Al systems more intelligent than themselves. A suitably capable base-Al system
then can be given as an argument to an Al-improvement operator that applies the base-Al
to rewrite a second Al system in order to produce a third, more intelligent Al system:

(1) Improve(base-AL object-AI metric(tasks, smarter)) —> smarter-Al,

where “smarter” is defined in terms of suitably general task-performance metrics.

We can presumably parameterize this operator with any of a range of metrics for
improvement, including a metric on the information content of the product:

(2) Improve(base-AL object-AIL metric(tasks, smaller)) — smaller-AL
Here, improvement entails reducing the size of the product Al conditioned on contin-
ued adequate task performance.

The criterial tasks might require that the product Al satisfy a broad range of per-
formance tests after learning from appropriate curricula. Given a sufficiently general,
superintelligent object Al, a suitably chosen set of criterial tasks can ensure that the
product Al system is a general, superintelligent learner.

In the reference problem situation (which assumes an opaque, strongly-improving
Al technology), we can apply the improvement operator as follows:

(3) Improve(initial-AL initial-AI metric(tasks, min-MDL)) — MDL-distilled-Al,

where the resulting “MDL-distilled Al” has two key properties:



1) The task-performance criteria ensure that, like the initial Al, the product
is capable of open-ended learning and recursive improvement.

2) The MDL metric ensures that, within resource constraints, the product
is the most compact such system that the initial Al could construct.

2.1 Why would an Al system pursue MDL rather than intelligence?

An Al-improving Al system could naturally perform a range of compact-Al imple-
mentation tasks, developing MDL-compact versions of systems that can learn to play
chess, or learn to beat Watson at playing Jeopardy!, and so on. Developing compact
versions of systems capable of open-ended learning and recursive improvement is a
fundamentally similar kind of implementation task: Optimization of a system for com-
pactness subject to general criteria for learning and performance. Note that tasks of
this sort do not entail reflexive, self-modification concerns.

To the extent that concerns might arise regarding problematic strategic behavior in
opaque, ill-characterized Al systems, these concerns could potentially be addressed by
(for example) restarting an Al-improvement process from a non-problematic check-
point and interposing MDL distillation steps along the way.

2.2 Omitting language content, omitting domain knowledge

“Knowledge metering”—controlling information inputs—offers a powerful technique
for constraining the content of MDL-distilled systems. Consider language:

Infants demonstrate that intelligent systems can achieve general learning capabil-
ities without recourse to an initial endowment of language content (that is, without
knowing specific grammar or vocabulary). In particular, general language-learning
ability is a consequence of strong priors on abstract language structure in combi-
nation with very weak priors on concrete language content.

Distillation of MDL learners would naturally omit vocabulary because vocabulary is
MDL-bulky and easily taught or installed. Note that vocabulary cannot be guessed
without specific knowledge—would guesses yield a dictionary of Chinese, English,
Klingon, or Chicomuceltec? Vocabulary, like other historically-contingent linguistic
information (e.g., Figure 2), cannot be inferred from language-independent sources.

Similar remarks apply to the historically-contingent bodies of knowledge that
comprise the bulk of the content of most academic fields (e.g., the biosciences), and to
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Figure 2. Contingent linguistic information.



knowledge (e.g., of chemistry) that is contingent on physical parameters such as the
mass of the electron. The kinds of knowledge that will necessarily (though perhaps
implicitly) be retained by an MDL learner presumably fall within the scope of the
academic disciplines termed “Formal sciences” in Table 2. The development of profes-
sors from infants demonstrates that non-specific priors and general mechanisms pro-
vide an adequate basis for open-ended learning.

Given that a body of contingent information has been omitted, suitable constraints
on information inputs can preclude its later acquisition. Judging the constraints that
follow from a particular knowledge-metering policy will, however, require consider-
ation of not only direct, but also inferred knowledge. Bounds on inference will some-
times be clear, but in considering samples of informal world knowledge, for example,
the extent of inferential knowledge may be extraordinarily hard to judge.

Table 2. Academic disciplines relevant to widely differing tasks:

1. Humanities 3. Natural sciences 5. Professions
1.1 Human history 3.1 Biology 5.1 Agriculture
1.2 Linguistics 3.2 Chemistry 5.2 Architecture...
1.3 Literature 3.3 Earth sciences 5.3 Business
1.4 Arts 3.4 Physics 5.4 Divinity
1.5 Philosophy 3.5 Space sciences 5.5 Education
1.6 Religion 5.6 Engineering
4. Formal sciences 5.7 Environmental...
. . . 5.8 Family...
2. Social sciences 4.1 Mathematlcs' 5.9 Human physical...
2.1 Anthropology 4.2 Con‘lputer sciences 5.10 Journalism...
2.2 Archaeology 4.3 Logic 5.11 Law
2.3 Area studies 4.4 Statistics 5.12 Library...
2.4 Cultural... 4.5 Systems science 5.13 Medicine
2.5 Economics 5.14 Military sciences
2.6 Gender studies 5.15 Public admin.
2.7 Geography From Wikipedia, 5.16 Social work
2.8 Political science “Outline of academic 5.17 Transportation

2.9 Psychology disciplines”
2.10 Sociology

2.3 Omitting externally-oriented plans

To represent plans requires information, and to the extent that plans are not task-
relevant, distillation will tend remove the information that embodies them. In particu-
lar, plans that are both specific and oriented toward the external world must contain
substantial contingent information that is, as we have seen, unnecessary for general
learning capabilities.

One might object that, in an (avoidable) adversarial situation, problematic plans
might be embedded in task-relevant structures in ways that, by intention, make them



difficult to identify and remove. A superintelligence-enabled distillation process, how-
ever, would presumably be able to employ fresh, compact structures of similar func-
tionality. Needlessly complex structures need not be understood to be discarded.

2.4 Distillation fits current research practice

MDL distillation is intended to separate knowledge from learning capability, and in
machine learning today, this separation already holds: Deep learning systems may
have surprisingly compact abstract specifications, yet can be trained with gigabytes of
data to produce systems with megabytes of opaque, numerical content.

In machine learning, separating knowledge from learning capability is both good
science and good engineering:

— Separating knowledge content from learning capability facilitates human
understanding of learning processes and their products.

— Training content-free learning systems with known datasets enables
reproducibility and benchmarking during development.

— Training content-free learning systems minimizes path-dependent biases
and enables diverse applications of particular learning methods.

— MDL principles often improve generalization from training examples
to data subsequently used in testing, validation, and applications.

At the threshold of recursive Al improvement, MDL distillation could be applied to
separate knowledge from learning capability even if these have become entangled, and
can thereby provide a way to retain or recover the scientific, engineering, and safety
advantages of current research practice.

3 From MDL distillation to superintelligence-enabled
Al tools

Implementing the third step along the proposed low-risk path to Al tools (Table 1)
calls for tutoring minimal-content superintelligent learners with generic (“learning-
to-learn”) and then specialised knowledge to produce specialised, domain-specific Al
systems. Figure 3 illustrates the general approach.

Tutoring a distilled, effectively empty MDL learner enables metering (and auditing)
the initial knowledge-content of the resulting Al products. This approach mitigates
part (2) of the reference problem situation, the potential opacity of the knowledge-
content of emerging superintelligent systems. Distillation and knowledge metering
can constrain knowledge content regardless of its representation.

Specialised competencies can be narrow, yet powerful; potential examples include
superintelligent theorem provers, computer architects, and systems with superintel-
ligent engineering competence in solving the joint structural, mechanical, thermal, and
aerodynamic problems of hypersonic aircraft design. Tutoring tightly focused special-
ists while omitting direct or implied knowledge of language, politics, and geophysics
may require attention, but need not always be difficult.



In some domains, tasks will carry potentially significant information about seem-
ingly unrelated aspects of the external world. Information brought by a task stream
need not be cumulative, however, because problem-solving systems need not carry
forward information from previous instantiations (e.g., checkpoints). A more relaxed
policy would enable cumulative learning in the form of canonical representations of
task-products such as mathematical theorems, digital circuits, or novel mechanical
configurations—in other words, compact representations of task-relevant knowledge.

3.1 Specialisation and composition

Narrow specialists will typically address only parts of problems, sharply limiting their
applications in isolation. It is therefore natural to combine narrow domain specialists
to build modular systems that, though still specialised, have broader utility.

There are extensive precedents for building broad problem-solving capabilities on
specialist foundations, for example:

— Neural systems that combine visual, auditory, and motor cortex.
— Engineering teams composed of diverse human specialists.
— Market economies with extensive division of labor and knowledge.

— Complex software architectures composed of modular components.

As these examples suggest, systems composed of diverse specialists can implement
extraordinarily broad capabilities. In the context of Al safety, however, this potential
highlights the possibility of composing safe components to build risky systems. Thus,
although a systematic exploration of potential superintelligence-based systems can
begin by examining means for implementing specialised components, attention then
must turn to questions of emergent properties, safety, and risk not only over a range
of domains and tasks, but in the context of alternative modular architectures.

Metered
domain knowledge
and training tasks

Focused
ﬁTeach specialist
Fixed-

Focused
q P “ content
Expanded Teach specialist . specialist
learner B Focused
specialist

Multiple Teach F d Optional
learner- =l ocusec secondary
instantiations Teach specialist MDL filter

Figure 3. General approach to producing specialist systems from
MDL-distilled (then expanded) learning systems (Fig. 2).



3.2 Means and challenges of implementing specialisation

In some areas, knowledge metering can establish clear constraints on potential cross-
domain inferential knowledge; in other areas, potential cross-domain inference may
be broad and unpredictable. In considering the scope of potential inference, however,
it is important to note that the learning capabilities of a specialist system can be
curtailed though secondary (post-tutoring) distillation, yielding non-learning systems,
and that, as noted-above, cumulative task-related learning can be directly constrained
by checkpoint/restart policies.

In addition to constraints on knowledge per se, specialist Al can be further shaped
and constrained by distillation metrics that optimize resource/performance trade-offs
with respect to domain-specific task streams (thereby limiting the scope for other
functions), and by fixed interfaces that input task descriptions and output results in
domain-specific representations (e.g., mathematical expressions, physical engineering
specifications)—in effect, service APIs.

As with inference applied to bodies of knowledge, it will sometimes be difficult to
judge the extent of shaping and specialisation that can be induced by task-perform-
ance optimization, task-stream control, and domain-specific APIs. These techniques
augment a rich set of tools that raise a wide range of questions regarding specialisa-
tion, safety, and risk in the context of concrete domains, tasks, and specialist-enabled
system architectures.

3.3 Modular specialist architectures

Figure 2 illustrates a general scheme for composing distilled specialists to implement
systems with more general capabilities.

Human users

translator/filter

domain-specific
representations

Other
smart

service
providers

Figure 4. Schematic architecture for a system
of linked specialists translated and filtered by
a user-interface specialist; see also Fig. 5.



Note that the task of mediating communications between human users and domain
specialists might be performed by an interface-communication specialist that enables
users to convey and clarify task descriptions through discussion in a domain-specific
subset of a natural language (potentially augmented by interactive graphics), while
concurrently exchanging task-specific representations with a system composed of
domain specialists. Decomposing tasks into narrower subtasks is itself a specialty, as
is the translation of results into forms understandable to the human user.

Any or all of these specialists could be made incapable of long-term, cumulative
learning by initiating each task with a system in a fixed initial state. To do so would be
quite natural: Avoiding task-to-task modifications of system content has the virtue of
ensuring consistent behavior, which can be both good engineering practice and an aid
to debugging.

The appendix presents a more concrete example of modular specialist composition
for the important case of engineering design (Figure 5).

4 Prospects and research directions

Intelligence distillation, knowledge metering, focused specialists, checkpoint/restart
and modular composition are general control measures with many potential instant-
iations and joint applications. These concepts, considered both individually and as a
whole, raise questions not only regarding potential scope, implementations, and appli-
cations, but also regarding effective methodologies for exploring this range of quest-
ions with an eye to potentially critical decisions on paths toward superintelligence.

4.1 Some open questions?

How should we interpret “minimum description length”? For practical purposes, a
description in terms of Turing machines isn’t appropriate; instead, a description might
be expressed in a high-level language or executable specification, and might incorp-
orate packaged, opaque algorithms selected from a given library, thus reducing many
algorithm descriptions to array indexes. Note that a set of considerations involving
resource constraints, curriculum content, and the elastic concept of “learning to learn”
are jointly relevant to formulating suitable description-length metrics.

Further, how can we model Al risks and control-measure dependencies? If diverse
techniques can be applied to reduce various aspects of strong-agency risk, how can we

2 And a terminological question: “What how should we define ‘superintelligence™? The distilled-
learner concept highlights a crucial distinction between learning and competence. Infants lack adult
competence, yet are considered intelligent because of their ability to learn. Accordingly, the term
‘superintelligence’, as used here, refers both to superhuman learning capability and to resulting
superhuman intellectual competencies; accordingly, use of the term does not imply that any par-
ticular system has any particular competencies, human or otherwise.

This contrasts with 1. ]. Good’s 1965 definition of an ultraintelligent machine as “a machine
that can far surpass all the intellectual activities of any man however clever” (emphasis added).
Superhuman learning and superhuman competence must be sharply distinguished.

10



model risk reduction achieved through multiple techniques? Which control measures
can be modeled as probabilistic, independent, and multiplicative? Which are weak if
applied separately, yet powerful in combination? Which share common failure modes?

In this framework, what are the thresholds of dangerous agency? What marks the
boundary between low-risk Al tools and high-risk Al agents? When might inference
from a knowledge base produce unexpected knowledge, and perhaps unexpected cap-
abilities? How broad are the regions that can confidently be regarded as safe?

Prospects for safe applications of superintelligence suggest further open questions:

— How might we exploit a superintelligent theorem-prover?
— What questions could specialised superintelligent systems answer?
— Could superintelligent assistance help us solve Al value-problems?

— Could we structure multilateral games among untrusted superintelligent
systems to obtain trustworthy solutions to problems of strong Al agency?

Table 3 outlines a sampling of technical topics in need of further exploration. These
range from techniques for monitoring capabilities during Al development through
specific Al control measures and the scope of their applicability.

Turning to concerns of a different sort, Table 4 outlines a range of considerations
related to potential Al development paths, and in particular, key concerns that can be
expected to arise in the context of ongoing research and development projects, includ-
ing the potential costs, uncertainties, constraints, and delays incurred by implementing
alternative safeguard policies. The approach to interim Al safety outlined here sug-
gests the possibility of developing concrete and palatable advice that aligns with exist-
ing research practice—in particular, methods that separate learning capabilities from
learned content—while offering the potential for identifying low-risk paths to a range
of rewarding applications of superintelligent Al technologies.

Table 3. A range of technical topics and considerations:

Potential Al-threshold concerns Specialist architectures

« Competence factoring
« Modular composition patterns

« Monitoring emerging capabilities
« Applications of checkpoint/restart

Distillation processes and metrics Designing information interfaces

- Filtering at human interfaces
« Monitoring at internal interfaces

- Applications of iterative distillation
« Secondary domain-specific distillation

Domains and curricula

« Generic v. specialised curricula
« Teaching v. database-loading

Knowledge partitioning

- Domains and partitions
- Knowledge-scope ambiguities

Application-specific risks

« World-interactive robotics
« Internet access and interaction

Risks of agency

- Boundaries of risky agency
- Safe composition of risky agents

11



Table 4. A range of Al-development research considerations:

Current Al research practices Expected economic concerns
« Assessing current practice « Reducing safeguard uncertainties
- Distillation as good science  Minimizing safeguard costs
- Assessing current applications  Minimizing safeguard delays
« Precursors of risky Al agency - Enabling safe applications

Turning to concerns of a different sort, Table 4 outlines a range of considerations
related to potential Al development paths, and in particular, key concerns that can be
expected to arise in the context of ongoing research and development projects, includ-
ing the potential costs, uncertainties, constraints, and delays incurred by implementing
alternative safeguard policies. The approach to interim Al safety outlined here sug-
gests the possibility of developing concrete and palatable advice that aligns with exist-
ing research practice—in particular, methods that separate learning capabilities from
learned content—while offering the potential for identifying low-risk paths to a range
of rewarding applications of superintelligent Al technologies.

Turning to Al-risk research, studies of transitional Al risk management could
potentially help to bridge a gap, not only in actual risk control techniques (e.g., the lag
in preparedness that defines the reference problem situation, Section 1), but also
between the risk-oriented and development-oriented Al research communities. These
communities have substantial contact today, yet the bridge between them could per-
haps be strengthened.

Risk research focused on the unsolved problems presented by superintelligent Al
agency is by nature abstract and long-term, and hence has few actionable implications
for the concerns of Al developers today. Inquiry into transitional Al safety strategies
(Table 5), by contrast, focuses on exploring the territory between today’s research
objectives and longer-term concerns; it could offer advice relevant to near-term con-
cerns, and could perhaps help us to reframe and reformulate problem situations for
research into long-term Al risk control.

Table 5. A range of Al-safety research considerations:

Bridging a gap in Al research agendas Addressing long-term objectives
* Near-term v. Long-term concerns « Enriching the conceptual universe
« Concrete v. Abstract problems - Seeking paths through the transition
« Applications v. Risk research - Seeking enablers for full solutions

Broadening support for risk research

- Engaging new researchers
» Addressing a wider range of problems
 Motivating a wider range of funders

12



5 Summary

In the familiar and challenging reference problem situation, Al technology has reached
the threshold of rapid, recursive improvement based on opaque, poorly-understood Al
systems, while economic and other pressures ensure the application of emerging super-
intelligence to practical problems before solutions to the problems of strong Al agency
are known and implementable.

To address this potential situation, a key aim of transitional Al-risk reduction tech-
niques is to enable applications of superintelligence while minimizing the risks of Al
agency. To the extent that transitional Al risk management can delay those risks while
providing safe access to powerful intelligent resources, it can contribute to solving the
more fundamental problems in several ways: by buying time for further research, by
informing research with concrete experience, and, perhaps, by enabling us to use super-
intelligent problem-solvers to help us solve the problems of superintelligent agency.

To address risks in the reference problem situation, superintelligent Al-improve-
ment capabilities could be applied to the task of producing (distilling) the simplest pos-
sible general-purpose learners, defining simplicity by a suitable minimum description
length metric. MDL-distilled learners developed by means of appropriate protocols can
with high confidence be assumed to lack significant domain knowledge in areas not
directly related to successfully performing a set of criterial learning tasks.

Uncertainties regarding the content of what are still (by conservative hypothesis)
opaque Al systems can be constrained by training multiple instances of MDL-distilled
learners with focused, audited knowledge comprising curricula for distinct specialties.
Secondary distillation can further narrow retained knowledge to the essentials requir-
ed for subsequent domain-specific yet qualitatively superintelligent task performance;
as a further knowledge-metering measure, checkpoint/restart protocols can preclude
cumulative learning from subsequent task streams.

Finally, the primary limitations of narrow domain specialisation can be addressed
by composing narrow capabilities to form more comprehensive systems. Suitable arch-
itectures can enable systems to address problems that include communication with
human users while restricting the incorporation of general information about the world.

Table 6. A set of composable techniques for transitional Al risk management:

Intelligence distillation to control initial information content
Knowledge metering to control information input
Checkpoint/restart to control information retention
Focused curricula to train narrow domain specialists

Modular architectures to compose specialists for practical tasks

13



In this connection, the following appendix explores a potential architecture for inter-
active, Al-enabled engineering in more depth.

Table 6 summarizes a set of techniques, that, in creative and careful composition,
could provide a powerful approach to shaping the content and functional capabilities
of superintelligent Al systems.

In themselves, these techniques cannot ensure safety, because the modular com-
position of specialist Al systems could be used to implement systems with emergent
and effectively unconstrained superintelligent capabilities. Although criteria for rel-
iably safe Al applications are not yet well understood, one can nonetheless anticipate
that well-chosen strategies employing these techniques could substantially expand the
range of recognizably safe terrain.

Finally, looking beyond incremental extensions of safe Al applications, perhaps the
most important motivation for pursuing this line of research is the possibility that strat-
egies for safely applying superintelligent problem-solving capabilities could point the
way to strategies for applying superintelligence to solving the fundamental problems
presented by superintelligent agency.

14



Appendix: Safe architectures for superintelligent
engineering

Superintelligent Al-based engineering is important not only for its potential appli-
cations, but also as an example in which the roles of specialisation, modularity, and
task-composition are strong and relatively well understood.

Highly functional Al-enabled engineering systems should:

— Discuss design requirements with users
— Generate candidate designs

— Test candidate designs in simulation

— Evaluate design performance

— Present and explain designs to users

— Iterate design-cycles as necessary

— Remember design discoveries

The architecture outlined here suggests how these capabilities might safely be pro-
vided by means of a modular composition of specialists, and it accordingly outlines a
task decomposition that would enable user interaction, iterated design and evalua-
tion, and cumulative domain-specific learning (in effect, memoization).

Figure 5 diagrams a proposed coarse-grained task decomposition and associated
interfaces.

Human users
<
T omme )
engineering
chat-and-sketch-bot
specification _)speciﬁcation
generator ~ explainer
] A
a e )
design ——3 design
generators €= evaluators

4

design

\searcher

simulation
server

curator

catalog

Figure 5. Distilled specialists composed to implement
a system with scope for broad engineering competence.
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A.1 Human-interface subsystem

In this conception, the human-interface subsystem consists of two layers of special-
ists: The outward-facing portion is a “chat-and-sketch-bot” that serves as a smart,
interactive, human interface with joint competence in domain-relevant language and
diagrams. Its knowledge content is specialised with respect to an engineering domain,
a user’s language, preference settings, and so on. The inward-facing interface of the
chat-and-sketch-bot produces annotated diagrams, tables of performance criteria, and
the like.

These diagrams, tables, etc.,, are passed to a “specification-generator” that produces
a formal, essentially physical description of the engineering task; an inverse “explan-
ation generator” translates physical descriptions into forms that the outer specialist
can present to a user. In iterative task specification, the explanation generator might
report requirements that the specification-generator flagged as ambiguous, inconsis-
tent, or cannot be satisfied.

This multi-component human-interface subsystem plays no role in engineering
tasks per se: The engineering competence of the system depends on the contents of
the inner box in Figure 5.

A.2 Specialised engineering subsystems

Problem-solvers for engineering tasks can be decomposed into candidate-design gen-
erators and candidate-design evaluators; the latter components test and score designs
with respect to physical constraints, criteria, and performance metrics.

Figure 5 diagrams a system at this level of abstraction, including the potential for
generative processes to draw on catalogues of previous solutions to design problems,
and that evaluation processes can employ external specialists in physical modeling
and simulation, and can also, from time to time, transmit designs to a catalogue-curator.
The curator stores and indexes designs that meet criteria for novelty and perform-
ance. (Note that storing designs in the form of canonical, parameterized, MDL repre-
sentations can not only reduce their information content, but will typically expand
their generality of application and facilitate search.)

Enabling catalog-mediated storage and retrieval of designs can implement an effec-
tive and yet narrowly domain-specific form of cumulative learning. In effect, catalogue-
mediated storage and retrieval allows systems to learn and share a growing set of
(provisional) if-then rules for engineering design; alternatively, storage-and-lookup
can be viewed as a form of memoization.

A.3 System architectures

Figure 5 diagrams engineering systems at a high level of abstraction and aggregation;
in practice, an engineering system would be implemented as a finer-grained network
of subsystems. In engineering, form follows function, both in designed products and in
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design processes; it would be natural to template engineering-system processes and
architectures on familiar patterns of task specialisation in engineering organizations.

Task organization in engineering (for all but simple or repetitive tasks) involves
top-down, hierarchical decomposition of system requirements into subsystem require-
ments, and (lower levels), decomposition of design tasks into specialties such as optics,
structures, electronics, and so on. Functionally, each relationship in this organization
entails iterative, bidirectional exchange of domain-specific representations of tasks and
candidate solutions, because iterative design generation and evaluation are character-
istic of engineering design tasks.

Much more could be said about potential architectures and applications of Al-based
engineering systems, but the above description gives a sense of the abstract relation-
ships among task structures, specialisation, and learning.

The nature of specialist roles in engineering may give a more concrete sense of how
MDL learners might be used to produce specialists by tutoring learner-instances with
focused domain knowledge and tasks, followed by domain-specific secondary distilla-
tion.

A.4 Safety considerations and generalizations

Considering the architecture outlined above, there seems good reason to think that the
techniques of intelligence distillation, specialisation, and architectural modularity could
enable a range of engineering systems, performing at a superintelligent level, to be
developed and applied safely, which is to say, employed without incurring a sub-
stantial risk of problems involving strong Al agency.

Connoisseurs of subtle Al-risk mechanisms will recognize that systems developed
and applied in formal accord with the template outlined above could nonetheless pre-
sent unacceptable intrinsic risks: Modes of means-ends analysis form a continuum, and
viewed abstractly, that continuum embraces both circuit design and strategic planning.

By the same token, however, it may be fruitful to explore generalizations of super-
intelligent engineering systems, pursuing a closer analysis of potential architectures,
applications, risks, and risk-countermeasures. Strategies that exploit specialist problem-
solving architectures can be expected to generalize across a wide range of Al tasks,
and understanding the scope of these strategies could potentially contribute to solving a
correspondingly wide range of problems involving the safe application of superintel-
ligent problem-solving capabilities.
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