
Utility indifference

Stuart Armstrong,
stuart.armstrong@stx.oxon.org

2010

1 The motivating scenario

Consider an AI that follows its own motivations. We’re not entirely sure what
its motivations are, but we would prefer that the AI cooperate with humanity;
or, failing that, that we can destroy it before it defects. We’ll have someone
sitting in a room, their finger on a detonator, ready at the slightest hint of
defection.

Unfortunately as has been noted ([3], [1]), this does not preclude the AI from
misbehaving. It just means that the AI must act to take control of the explosives,
the detonators or the human who will press the button. For a superlatively
intelligence AI, this would represent merely a slight extra difficulty.

But now imagine that the AI was somehow indifferent to the explosives going
off or not (but that nothing else was changed). Then if ever the AI does decide
to defect, it will most likely do so without taking control of the explosives, as
that would be easier than otherwise. By “easier” we mean that the chances of
failure are less, since the plan is simpler – recall that under these assumptions,
the AI counts getting blown up as an equal value to successfully defecting.

How could we accomplish this indifference? If the AI implements a utility
function, which is the most likely situation ([2]), then the easiest way would be
to set the utility of explosive destruction to be equal to that of defection. Then
we would have achieved our goal. But this requires us knowing exactly what
the utility of defection is – and if we did, we’d want to set it to zero or minus
infinity immediately. The question is only of relevance in situations where the
utility is to complicated for us to follow, and the meaning of “defection” is too
complicated for us to parse.

1.1 The idea

Let u be the AI’s utility function. If we have access to u and the ability to
change it (or check it), then we can make the AI indifferent to the outcome of a
specific event X (for instance, a quantum measurement). We make no further
adjustments to u. Then if we ensure that, for instance, event X will cause
detonation of the AI with very high probability, we will have accomplished our
goal of AI indifference, without needing any further understanding of u.

Of course, the explosives example was simply one possibility – there are
potentially many scenarios where AI indifference to a particular outcome would
be of use.

1

2. Utility indifference

2 Utility indifference

The rest of this paper will put the concept of utility indifference on a rigorous
footing. Let X be any probabilistic event (for instance a quantum measurement,
a coin toss, the value of the future stock-market). We will write X = a to
designate “the event X returns the value a”.

Let Ω be the set of all possible worlds. A utility function u : Ω → R maps
each world to its utility value. Let X be a specific probabilistic event, with two
possible outcomes: X = 1, with probability p and X = 0, with probability 1−p.
Let ΩX be the set of worlds in which X happens, which further splits into the
sets Ω1 and Ω0 of worlds where X = 1 and X = 0 respectively.

There is a partition of ΩX into a set of equivalence classes [ΩX], where
ω1 ∼ ω2 whenever ω1 and ω2 have the same history up to X. For any E ∈ [ΩX]
define E1 as E ∩Ω1 and E0 as E ∩Ω0. So E1 is the set of worlds with the same
history up to X and where X = 1; and conversely for E0.

At the beginning, the agent has an initial probability estimate for all ω in Ω,
a measureable map P : Ω→ [0, 1] such that

∫
Ω
P (ω)dω = 1. Given a measurable

subset S of Ω, the probability of S is P (S) =
∫
S
P (ω)dω. Given two measurable

subsets S and T of Ω, the conditional probability P (S|T) is

P (S ∩ T)/P (T).

The expected utility of a set S is then u(S) =
∫
S
P (ω)u(ω)dω. The expected

utility of a set S, given a set T , is

u(S|T) = u(S ∩ T)/P (T).

Define U(S) as u(S|S), the ‘intrinsic’ utility of S in some sense (more precisely,
it is the utility of S if we were certain that S was going to happen).

Definition 2.1 (Indifference). For two disjoint sets S and T , we say that the
utility u is indifferent between S and T iff

U(S) = U(T).

Note that this means that

u(S ∪ T) = U(S)P (S) + U(T)P (T)

= U(S)P (S ∪ T)

= U(T)P (S ∪ T).

In other words, the utility is indifferent to the relative probabilities of S and T :
changing P (S) and P (T) while keeping P (S ∪T) = P (S) +P (T) fixed does not
change u(S ∪ T).

Then we define a new utility function v as:

• If ω /∈ ΩX , v(ω) = u(ω).

• If ω ∈ E0 ⊂ E ∈ [ΩX], v(ω) = u(ω).

• If ω ∈ E1 ⊂ E ∈ [ΩX], v(ω) = u(ω)− U(E1) + U(E0).

Essentially, this rescales the utility of the worlds with X = 1 to those in which
X = 0. Then writing V(S) for v(S|S), we have the following immediate result:

2

3. Notes and implementation

Proposition 2.2. For all E ∈ [ΩX], V(E1) = V(E0), i.e. v is indifferent
between E1 and E0.

Proof. Since P has not changed, and v(ω) = u(ω) for any ω ∈ E0, V(E0) =
U(E0).

V(E1) = v(E1|E1) =

(∫
E1

P (ω)v(ω)dω

)
/P (E1)

=

(∫
E1

P (ω)(u(ω)− U(E1) + U(E0))dω

)
/P (E1)

= −U(E1) + U(E0) +

(∫
E1

P (ω)u(ω)dω

)
/P (E1)

= −U(E1) + U(E0) + U(E1)

= U(E0) = V(E0).

�

Now consider an agent A that seeks to maximise the utility v. We can say
that:

Theorem 2.3. A utility maximising agent that implements utility v is indiffer-
ent to the value of p up until X; i.e. before X, its decisions will be the same for
different values of X.

Proof. Before X, the agent may gain information that will cause it to update
its probability estimate. This is done by partitioning Ω into a set S of possible
worlds and S of impossible worlds. However, for any ω ∈ E1 ⊂ E, if ω ∈ S,
then ν ∈ S for all ν ∈ E, since all elements of E are indistinguishable before X.
In other words, for all E ∈ [ΩX], either E ⊂ S or E ⊂ S.

Hence, either V(E1 ∩ S) = V(E1) = V(E0) = V(E0 ∩ S) or V(E1 ∩ S) =
V(∅) = V(E0 ∩ S). Thus up until X, the agent is indifferent between X = 1
and X = 0. This means that it is indifferent to the conditional probabilities
P (X = 1|ΩX ∩ S) = p and P (X = 0|ΩX ∩ S) = p− 1. �

3 Notes and implementation

It would be advantageous if the event X were something like a quantum mea-
surement, rather than a coin toss or a probabilistic measure of ignorance. This
is firstly to ensure that the probability p is constant and does not change. But
secondly, it is to make sure the AI’s implementation does not hit a singularity: if
the AI figures out that the probability of X = 0 is zero before X happens, then
it must correct the utility of possible worlds with the intrinsic utility of impossi-
ble worlds, which involves a zero (utility of X = 1) divided by zero (probability
of X = 0). This may lead to errors, depending on the implementation, and is
an extra point of possible failure. Better to stick with a quantum measurement,
or possibly a coin toss in a chaotic environment.

How easy would it be to implement the utility v? It is a simple modification
of the utility u; unfortunately, humans are unlikely to be able to partition the
set of possible worlds into the required [Ω]; the AI would be much better at
it than us. However, delegating the task to the AI is, of course, potentially

3

4. Self-improvement

dangerous, especially as it would be improving both itself and its view of the
world.

Fortunately, the filter is conceptually simple, and can be hooked into the
utility function in a simple and hopefully checkable fashion (see the next section
on self improvement). In the meantime, it can be refined, as the next lemma
demonstrates:

Lemma 3.1. For any set S =
⋃

i∈I E
i where all the Ei are in [ΩX], define

S1 =
⋃

i∈I E
i
1 and S0 =

⋃
i∈I E

i
0. Then V(S1) = V(S0).

Proof of Lemma. Since the probability of X = 1 is p and X is independent
of all events preceeding it, we know that for all Ei,

(1− p)P (Ei
1) = pP (Ei

0).

Since P (S1) =
∫
i∈I

P (Ei
1), we must have P (S0) = P (S1)(p− 1)/p. Hence

V(S1) =

(∫
i∈I

V(Ei
1)P (Ei

1)

)
/P (S1)

=

(∫
i∈I

V(Ei
0)P (Ei

0)(1− p)/p
)
/(P (S0)(1− p)/p)

=

(∫
i∈I

V(Ei
0)P (Ei

0)

)
/P (S0)

= V(S0).

�
What the above result means is that the agent can always refine its utility

in the correct fashion. Even if the AI can’t distinguish yet between Ei
1 and Ej

1

(which means that it can’t distinguish between Ei
0 and Ej

0 either), it can still

renormalize the worlds in Ei
1∪E

j
1 by using −U(Ei

1∪E
j
1)+U(Ei

0∪E
j
0). Then, if

the AI later realises that it values Ei and Ej differently, it can refine its utility
calculations for these two sets without making previous utility calculations for
the unions of these sets wrong.

This also allows us, if we have access to a cruder, human-understandable
version of the AI’s utility function, to have a check that utility is still being
implemented: we expect to see V(S1) = V(S0) for any S, as fine as we can
distinguish it.

4 Self-improvement

Many AI designs envisage self-improvement, with the AI redesigning itself while
changing components of itself – including its own utility function. If the AI
judges that it will be more likely to achieve the goals of utility u while imple-
menting utility u′, it will shift to utility u′.

Call F the ‘filter’ that we applied to u to get v (i.e. v = F(u)). Notice that
v is F-invariant; i.e. F(v) = v. In fact, any utility that is F-invariant is also
indifferent to X.

Then we would want to check that the AI continues to implement F as it
changes its utility. If F were centrally coded and easy to verify, it would be

4

REFERENCES REFERENCES

hard for the AI to try and change to a non-F-invariant while fooling us and
under the instructions of an initial F-invariant utility.

It feels evident that as a long as there is no meta-reason for F to be a
disadvantage to the AI (such as another agent who swears they will blow up
AIs with F-invariant utilities), the AI will replace an F-invariant utility with
another F-invariant utility. However, this assumption is not automatically true,
and the AI may do other things – upping the utility of defecting in worlds outside
ΩX , for example – that undermine the point of indifference. All in all, great
care must be used to maintain indifference with a self-improving AI.

References

[1] Oracle AI. Stuart Armstrong, Nick Bostrom, Toby Ord, Anders Sandberg.
Paper upcoming.

[2] The Basic AI Drives. Omohundro, Stephen M. Artificial General Intelli-
gence, 2008 proceedings of the First AGI Conference, eds. Pei Wang, Ben
Goertzel, and Stan Franklin. Vol. 171. Amsterdam: IOS, 2008.

[3] Artificial intelligence as a positive and negative factor in global risk. Eliezer
Yudkowsky. Global Catastrophic Risks, 2007.

5

