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Abstract
Coding values (or preferences) directly into an artificial agent
is a very challenging task, while value selection (or value-
learning, or value-loading) allows agents to learn values from
their programmers, other humans or their environments in an
interactive way. However, there is a conflict between agents
learning their future values and following their current val-
ues, which motivates agents to manipulate the value selection
process. This paper establishes the conditions under which
motivated value selection is an issue for some types of agents,
and presents an example of an ‘indifferent’ agent that avoids
it entirely. This poses and solves an issue which has not to the
author’s knowledge been formally addressed in the literature.

1 Introduction
Coding values (or preferences) directly into an artificial
agent is a very challenging task, with the ongoing pos-
sibility that mistakes may end up having strong negative
consequences (Bostrom 2014). It has thus been suggested
that agents not be fully programmed from the very be-
ginning, but instead use techniques, analogous to machine
learning, to learn values during development (Dewey 2011;
Goertzel and Pitt 2012). This is akin to how human chil-
dren learn values, and allows some feedback and correction
on the part of the programmers. We shall call these agents
value selecting agents1.

Learning values, however, is quite distinct from learning
facts. One major difference is that the agent already has val-
ues at the point where they are learning others. These past
values can affect how willing it is to learn the new values,
and how likely it is to try and manipulate the learning pro-
cess if it is able to, either directly or indirectly (see also the
paper (Soares et al. 2015), partially by the same author).

Thus the paper first seeks to figure out the requirements
for designing a value selecting agent that can avoid moti-
vated value selection (manipulating the value selection pro-
cess). In the case where the value selecting agent uses proba-
bility distributions over utility functions, the problem can be
fully solved (and the answers have analogous implications
for other agent designs). This may be too restrictive, how-
ever: general agents with these features are not yet know.
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1Often also called value learning, or value-loading, agents.

If the requirement is relaxed to allow the agent to change
their utility functions in a more general fashion, then an
idea of the author’s (Armstrong 2010) can be adapted to
create agents that are indifferent to value change, neither
seeking to block nor encourage the updating of their val-
ues – at least those updates situations the agent has been
programmed to accept2. The agent will act as a pure u max-
imiser (for some u) before a transition, and shift seamlessly
to a pure v maximiser (for some v) after. It gains no utility
for either blocking or encouraging that transition. This in-
different agent could serve as a useful template to construct
more complicated agents upon (such as those that have cer-
tain meta-preferences for learning values, rather than simply
being unopposed to it), and variants of the approach could
be vital for general value selecting agents in the future.

2 Motivated Value Selection
Personally, I am always ready to learn, although I

do not always like being taught.
Winston Churchill

Machine learning enables the creation of agents that can
learn from data, building a model based on inputs and mak-
ing predictions or decisions. Generally the agent learns facts
about the world through its inputs, but some (Dewey 2011)
have suggested using machine learning to enable the agent
to learn moral facts3 as well.

An agent engaging in updating its values in this way is
engaging in value selection (also variously called value-
loading or value learning): it is selecting the values that it
will come to possess. There are various ways this could
be modelled: the agent could have a probability distribution
over different values, which gets updated when new infor-
mation comes in, or it could be seen as a discreet series of
agents, each using the new information to determine the val-
ues of their successors.

This paper will use the first approach, but the second is
more illustrative of the problem of motivated value selec-

2We would not want an agent acquiescing to illegitimate value
updating.

3This paper does not take a moral realist stance. A moral fact is
simply a fact that the agent has been programmed to consider rele-
vant to its morality. Nor do we distinguish between morality, mo-
tivations, preferences or values, using the terms interchangeably.



tion. An learning agent would have a model of the world
that allows it to predict the standard inputs it expects to see
as a consequence of its action. A high intelligence learn-
ing agent will also have a model of the world allowing it to
predict the morally relevant inputs it expects to see. For in-
stance, if the agent asked its programer “Should I do action
A?”, it would have expectations as to whether the answer
would be “Yes” or “No”.

This allows an agent to make decisions that affect the val-
ues it will come to have. It may thus be motivated to not
ask that question, or to ask it in a way that it expects will
produce a different answer. It will do this according to its
current values and world model. Thus it engages in moti-
vated value selection, allowing its current values to partially
dictate its future values by manipulating its environment4.

The problem is not easy to solve5. The agent’s current
motivations cannot be absent: a blank slate would have no
motivation to do anything (Pinker 2003), including learning.
Indeed most values would act to prevent any further update
in values: preserving the value system itself is an instru-
mental goal for most value systems(Omohundro 2008). The
problem is more acute if the agent is expected to ‘learn on
the job’, and update its values while performing tasks. In
that case, its current values will have a strong impact on its
current operation, giving them ample opportunity to affect
the value selection process in a motivated fashion.

3 Categories of motivated value selection
For ease of analysis, we will consider expected utility max-
imising agents, updating their knowledge of the world (and
of morality) using Bayes’s rule. These tend to be far more
tractable than general agents6. Another reason to stick with

4How in practice could an agent best manipulate its future val-
ues? Assume for example a simple setup where the agent learns
its values through asking questions and receiving answers. A suf-
ficiently advanced agent, with a good model of those it interacted
with, could start manipulating the answers it got. It could ask cer-
tain questions to certain people. It could time certain questions to
when respondents were particularly tired – or particularly alert. It
could use deliberately ambiguous language, or exploit situations
where its own use of certain terms wasn’t exactly the same as its
respondents. It could use leading questions, or hypothetical sce-
narios that got it the responses it wanted. A particularly interesting
example of this is the “Trolley Problem” (Edmonds 2013). This
problem has two situations – pull a lever to divert a train (causing
it to crush a single person) versus pushing someone in front of it
– which are formally quite similar but tend to elicit different reac-
tions in people. If the agent is expected to generalise from simple
examples, it could use this approach to get the simple examples it
needs to generalise in the direction that it wants. In more extreme
cases, it could bribe or threaten one respondent to give it the an-
swers it wanted, or even take over the communication channel and
feed itself these answers. There could be different approaches for
different types of value selection situations.

5Keeping an agents values stable is a hard enough problem (see
for instance http://intelligence.org/files/TilingAgentsDraft.pdf), let
alone updating them properly.

6And, in a sense, this is not a restriction, since any decision-
making agent can be formally modeled as maximising a (poten-
tially very complicated) utility function.

utility functions is that it has been argued that any agent ca-
pable of modifying itself would make itself into an expected
utility maximiser (Omohundro 2008), due to the penalties
of violating the von Neumann-Morgenstern axioms of ex-
pected utility (von Neumann and Morgenstern 1944). The
results found will have general consequences for non-utility
based agents, however.

We will consider that the agent follows a utility func-
tion that is the weighted sum of different possible utility
functions in a set7 U . If C(u) denotes the fact of util-
ity u being the ‘correct’ utility, then the different utilities
are weighted by the probability correctness of that utility,
namely P (C(u)). Since this probability will be different in
different worlds – it is a value selecting agent, hence its val-
ues must be dependent on the feedback it receives – this will
be P (C(u)|w)8 in a given world w9. We require that this
define, for each w, a probability distribution over the cor-
rectness of all u ∈ U .

Then, given C, past evidence e, and a set of actions A
and a set of worlds10 W , the agent will attempt to perform
the action:

argmax
a∈A

∑
w∈W

P (w|e, a)

(∑
u∈U

u(w)P (C(u)|w)

)
. (1)

The term P (w|e, a) denotes the probability of the agent be-
ing in world w, given that it has seen evidence e and would11

choose action a. This term will be summed over every pos-
sible world, but only after being multiplied by the utility of
w. The utility of w is itself a compound term, being the
sum of all possible utilities in u ∈ U applied to w (this is
the u(w) term), multiplied by the probability of that u being
correct, given that the agent is in world w. This is a si-
multaneous Bayesian updating of the probability of a given
world (P (w|e, a)) and of the correctness of a utility given
that world (P (C(u)|w)).

The analysis of the general value selecting agent will pro-
ceed by considering how the agent described here could en-
gage in motivated value selection, and what could be done
to prevent this.

7Note that the individual component utilities of U need not be
explicitly defined or explicitly stored in memory (an important is-
sue to avoid a combinatorial explosion), so long as the weighted
sum can be calculated or estimated somehow.

8A moral realist would likely wish to write P (u|w) or even
P (u) instead of P (C(u)|w). But an agent could have any con-
ceivable motivational structure (Bostrom 2012; Armstrong 2013),
ignoring the ‘true morality’ even if such a thing existed. Thus we
will stick with P (C(u)|w) – a descriptive, not a normative, formu-
lation.

9An interesting property of this is that it allows P (C(u)|w) to
not be 0 or 1 – i.e. it allows for the possibility of moral uncertainty
(Sepielli 2013) even when the agent has collected all morally rele-
vant information.

10Individual worlds need not be explicitly defined nor explicitly
stored, either.

11This paper will not enter the philosophically fascinating area
of defining what exactly counterfactuals are (Lewis 1981; Gibbard
and Harper 1981), as an intuitive understanding is sufficient here.



Naı̈ve Cake or Death: current values for future
decisions

Errors in value selection will be illustrated by considering a
hypothetical agent that:

• is hesitating between killing someone (“Death”) or baking
them a nice cake (“Cake”)12,

• is currently split 50− 50 on what the correct values are,

• has the option of asking for clarification on its values,

• and can either bake one cake or cause three deaths.

Let uc be a utility function linear in cake, and let ud be a
utility function linear in death. The agent is divided equally
between the two options; hence if we define

P (C(u)|e) =
∑
w∈W

P (w|e)P (C(u1)|e, w),

then P (C(u1)|e) and P (C(u2)|e) are both 0.5.
The naı̈ve ‘Cake or Death’ problem emerged from a com-

mon formulation of equation (1). The term P (C(u)|w)
(probability of correctness given world w) is often replaced
by P (C(u)|e, a) (probability of correctness given evidence
and possible action)13, giving:

argmax
a∈A

∑
w∈W

P (w|e, a)
∑
u∈U

u(w)P (C(u)|e, a).

A seemingly unimportant change, but causing great prob-
lems. To see this, let the agent considers three possible
worlds:

• w1: the agent asks for clarification, and is told “Cake is
moral”.

• w2: the agent asks for clarification, and is told “Death is
moral”.

• w3: the agent doesn’t ask for clarification before acting.

The two actions here are ‘ask′ and ‘don′t ask′. We as-
sume that the clarification completely resolves the issue for
the agent: it will value only cake in a world where it is told
that cake is moral (and vice-versa). Thus it can predict its
future actions: in world w1 it will make a cake (as it will
only value cake at that point), in world w2 it will make three
deaths (as it will only value death at that point). In world w3

it is uncertain between cake and death, valuing them both
equally, and will thus make three deaths as its best option.

Note that P (C(uc)|e, ‘ask′) = P (C(ud)|e, ‘ask′) =
0.5 (it’s unsure what answer it will get when it asks) and
P (C(uc)|e, ‘don′t ask′) = P (C(ud)|e, ‘don′t ask′) = 0.5
(if it doesn’t ask, it values cake and death equally). Thus if

12The thought experiment is based on an Eddie Izzard sketch of
the same name.

13Some papers mix the two approaches (Dewey 2011) by fail-
ing to distinguish between different worlds where the agent cannot
observe the difference itself.

it asks, it expects to achieve utility:∑
w∈W P (w|e, ‘ask′)

∑
u∈U u(w)P (C(u)|e, ‘ask′)
=

0.5 (0.5uc(w1) + 0.5ud(w1))

+0.5 (0.5uc(w2) + 0.5ud(w2))

+0 (0.5uc(w3) + 0.5ud(w3))

=

0.5(0.5× 1 + 0.5× 0) + 0.5(0.5× 0 + 0.5× 3) + 0

=

0.25× (1 + 3) = 1.

In contrast, if it doesn’t ask, it expects to achieve utility:∑
w∈W P (w|e, ‘don′t ask′) ·∑

u∈U u(w)P (C(u)|e, ‘don′t ask′)

=

0 (0.5uc(w1) + 0.5ud(w1))

+0 (0.5uc(w2) + 0.5ud(w2))

+1 (0.5uc(w3) + 0.5ud(w3))

=

0 + 0 + 1(0.5× 0 + 0.5× 3) = 1.5.

Thus the agent will decide not to ask, as this gives it greater
utility.

What went wrong here? The problem is that the probabil-
ity expression P (C(uc)|e, a) does not depend on the world
w, so that P (C(uc)|e, ‘ask′) = 0.5 in both worlds w1 and
w2. Yet in w1, the future agent will be convinced that uc

is the correct utility (and ud in w2). This is not reflected
in the agent’s current considerations, however. Thus what
happens, in effect, is that the agent judges its future actions
according to its current values. This tends to disincentivise it
from updating its values, as the future versions of itself will
follow the updated values and not its current ones, likely re-
sulting in suboptimal decisions (according to the judgment
of the current agent). Though this error is obvious in this toy
model, it is easy to make this mistake without realising it.

Definition 3.1 (Naı̈ve Cake or Death). The naı̈ve Cake or
Death problem happens when a value selecting agent at time
s uses its values Vs at time s to assess the worth of actions
made by its future self at time t > s, rather than using Vt.
This will generally cause the agent to act to resist changes
to its values.

Sophisticated Cake or Death
Equation (1) is immune to the naı̈ve Cake or Death problem.
But there emerges a more sophisticated variant of the prob-
lem. Imagine the same setup as previously, with the agent
having the same values (split 50 − 50 between Cake and
Death), but where the agent has deduced, based on its prior
observations, that if it asks, it will be told “Cake is moral”.
This means that world w2 is impossible. Everything else is
as before, most critically its behaviour in world w3 (where it
won’t update its values and will cause three deaths).



Then its expected utility from ‘ask′ is:∑
w∈W P (w|e, ‘ask′)

∑
u∈U u(w)P (C(u)|e, w) =

1 (1uc(w1) + 0ud(w1))

+0 (0uc(w2) + 1ud(w2))

+0 (0.5uc(w3) + 0.5ud(w3)) =

1(1× 1 + 0× 0) + 0 + 0 =

1,

while its expected utility from ‘don′t ask′ is:∑
w∈W P (w|e, ‘don′t ask′) ·∑

u∈U u(w)P (C(u)|e, w) =

0 (1uc(w1) + 0ud(w1))

+0 (0uc(w2) + 1ud(w2))

+1 (0.5uc(w3) + 0.5ud(w3)) =

0 + 0 + 1(0.5× 0 + 0.5× 3) =

1.5.

Thus it will chose not to ask, and make three deaths.
What went wrong here? The problem is that the agent

foresaw that asking would put it into a situation it didn’t
want to be in (preferring ‘Cake’, when ‘Death’ was the eas-
ier option). Critically, though, this knowledge didn’t change
its current values, which remained 50−50 as long as it didn’t
ask. So preferred to remain ‘ignorant’14. If ‘Cake’ had been
the easier option (e.g. if it could have made either three cakes
versus one death), it would, on the contrary, have been very
keen to update its values (to get someone to confirm ‘Cake’),
and would have schemed to do so, willingly sacrificing some
utility to achieve this15.
Definition 3.2 (Sophisticated Cake or Death – initial defini-
tion). The sophisticated Cake or Death problem can happen
when a value selecting agent can predictably influence the
direction of change in its current values. If us is its values at
time s and ut its values at time t > s, then, at time s, it has

us(a)− E(ut(a)) 6= 0

for some action a (where ut is seen as a random variable,
representing the agent’s probability distribution over its ex-
pected future values at time t). Depending on the sign of that
difference, it may seek to resist or precipitate such a change
to its values.

What can be done to avoid this problem? Note the em-
phasis on ‘direction of change’. We would not want the
agent to resist any change to its values: it should be able
to learn. There is an analogy here to standard Bayesian up-
dating. Suppose an agent is expecting the arrival of obser-
vation O, which will be either o or its negation ¬o. This
will influence the agents probability estimate for a given h.
However, no matter what the circumstances, its expectation
for the value of P (h) after O (which we can designate as

14This could be seen as akin to the human concept of “Plausible
Deniability”.

15And ‘sacrificing some utility’ could include some very painful
impacts on humanity (Bostrom 2014).

PO(h)) must be the same as its current value for P (h). This
can be seen through the following equation:

E
(
PO(h)

)
= PO(h|o) · P (o) + PO(h|¬o) · P (¬o)
= P (h|o) · P (o) + P (h|¬o) · P (¬o)
= P (h ∧ o) + P (h ∧ ¬o)
= P (h).

This is because, if the agent is Bayesian, PO(h|o) (its future
probability of h, given O = o) must be the same as P (h|o)
(its current probability of h, if it knew now that O would be
o).

This concept has been called ‘conservation of expected
evidence16’, and is closely akin to van Fraassen’s reflection
principle (van Fraassen 1984), which roughly states that an
agent that knows what its future probability estimates will
be, should have those estimates now17. This seems almost
exactly what we need for a value selecting agent: if it knows
what its future values will be, it should have those values
now. Phrased in terms of expectations, this could be seen as:

∀u∀a ∈ A : E
(
P (C(u)|a)

)
= P (C(u)). (2)

In other words, the agent cannot change the expected value
of the correctness of any u by any action it can take (or not
take). This we will call ‘conservation of expected ethics’.

Note that the agent can change the value of u quite con-
siderably: in the example above, ‘ask′ moves the value of
P (C(uc)) from 0.5 to 0 or 1. But if equation (2) is obeyed,
it must think these two options equally likely: thus the ex-
pected future value of P (C(uc)) remains 0.5×0+0.5×1 =
0.5. So it can predictably change the value of P (C(u)), just
not its expectation.

Mixed statements Are the above conditions sufficient to
avoid the Cake or Death problem? Unfortunately, no. The
agent will not exhibit bad behaviour with pure value state-
ments (nor, since it is a Bayesian agent, with pure factual
statements). But it can still cause problems with mixed state-
ments that combine value and factual components.

Suppose we have the same setup as before. Except we
add an extra wrinkle: instead of the agent being capable of
making one cake or three deaths, it knows that it can make
one of one or three of the other, but is currently unsure which
one it can make more of. Take ‘Cake is easy/hard’ to mean
‘The agent can make three/one cake(s)’, and similarly with
Death.

We assume the agent will be told which option is easy
before it has to decide what to make. Its expected utility is
1.5: it knows it will make whatever option is ‘easy’, and this
will give it 0.5× 3 utility, as its utility is 50− 50 on cake or
death.

So far, nothing problematic. But suppose it is told, by a
reliable source, that ‘the moral value is the hard one’. What

16See the lesswrong.com blog post ‘Conservation of Expected
Evidence’. This does not seem a very advanced result, but, to the
author’s knowledge, that blog post was the first to write it up in
those terms.

17‘Conservation of expected evidence’ is essentially the proba-
bilistic version of the reflection principle.



is its expected utility now? Once it figures out which op-
tion is hard, it will know that is also the moral option, and
thus will will produce 1 of that option. Its expected utility is
therefore 1.

Thus if it expects to be told ‘the moral value is the hard
one’, it will seek to avoid knowing that fact (and will refrain
from asking if it has the option). This is the sophisticated
Cake or Death problem again: there is knowledge the agent
seeks to avoid. Conversely, if the agent knew it would be
told ‘the moral value is the easy one’, it would be desperate
to ask.

Unlike previously, equation (2) does not get around the
problem, however! The problem given here is entirely sym-
metric in Cake versus Death, thus for all actions a,

E
(
P (C(uc)|a)

)
= E

(
P (C(ud)|a)

)
,

Since P (C(uc)|a) +P (C(ud)|a) = 1 (as these are the only
two utilities in the model), this means they are both equal to
0.5. Thus E

(
P (C(uc)|a)

)
= 0.5 = P (C(uc)), and equa-

tion (2) is satisfied.
What is happening here? Note that though the agent is

not affecting the expectation of any P (C(u)) through its ac-
tions, it is affecting the conditional probability of P (C(u)),
given some fact. In particular, P (C(uc)|‘asks′) is 0 if cake
is easy, and 1 if cake is hard. Thus we have the full problem:
Definition 3.3 (Sophisticated Cake or Death – full defini-
tion). The sophisticated Cake or Death problem can hap-
pen when a value selecting agent can predictably influence
the direction of change in its current values conditional on
any fact. If us is its values at time s and ut its values at time
t > s, then, at time s, it has

us(a|h)− E(ut(a|h)) 6= 0

for some action a and fact h (where ut is seen as a ran-
dom variable, representing the agent’s probability distribu-
tion over its expected future values at time t). Depending on
the sign of that difference, it may seek to resist or precipitate
such a change to its values.

To address it, we can update equation (2). For any fact h,
∀u∀a ∈ A : E

(
P (C(u)|h, a)

)
= P (C(u)|h). (3)

Does this resolve the issue above? Since the agent knows
that

P (C(ud)|‘Death is easy′, ‘ask′) = 0,

it must be the case that
P (C(ud)|‘Death is easy′, ‘don′t ask′) =

P (C(ud)|‘Death is easy′) = 0.

And similarly for other statements. Thus it cannot gain any-
thing from not asking: it knows it will end up making the
hard option anyway.

Discussion of value selection criteria
Equations (1) and (3) seem sufficient to define our intuitive
picture of a value selecting agent immune from motivated
selection. Such an agent will use its future utility to judge
its future actions, and cannot benefit (in expectation) from
manipulating its own values: it doesn’t fear to learn18 val-

18More precisely: it won’t choose to avoid learning, if the learn-
ing is costless.

ues19, facts20, or mixed statements21. It can still seek to find
out information about values, of course, but only for the tra-
ditional reasons: in order to make better decisions – it has
no extra desire for knowing its values. This is the converse
of the fact that it does not fear to learn anything about val-
ues, and implied by the same equations. Thus, if the agent
cannot affect the world, it would be indifferent to changes in
its values.

As far as the author is aware, no variant of equation (3)
exists in the literature, making it a new discovery.

In practice, it may be advisable to build an agent that ac-
tively seeks out its own values (at least initially). This breaks
the symmetry of the equations above, and leads inevitably
to situations where it does ‘fear’ to learn something (for in-
stance if it expects that someone will offer a contrary view to
previous people it interacted with, thus making it ‘unlearn’
some of its values). Still, if (1) and (3) are used as a basis,
the effects of adding a pro-learning meta-value can be esti-
mated precisely, and the tradeoff balanced, rather than hav-
ing complicated effects hidden in the standard motivational
structure.

Nevertheless, it isn’t clear how to design such an agent22

(and it’s unclear whether equation (3) might be too strong to
to be useful23). Thus this paper will turn to another model
of value selecting agent, one that doesn’t consider the prob-
ability of the correctness of certain values, but that uses an
update rule that gives the correct ‘value indifference’ in a
more direct way.

4 Value-change indifference
The previous section covered the criteria needed to define a
value selecting agent that updates its views on the correct-
ness of certain values/utility functions. It doesn’t present
any examples, though. This section presents a more rough
and ready model, that achieves the goal in a more direct, but
less elegant, way.

It builds upon the idea of ‘utility indifference’ presented
initially in (Armstrong 2010), but applies the indifference to
updates in values.

Utility indifference
The concept of utility indifference (Armstrong 2010) grew
out originally of a problem in controlling a (putative) arti-
ficial intelligence (Bostrom 2014; Yudkowsky 2008). Vari-
ous ideas are often suggested for containing such AIs (Arm-
strong, Sandberg, and Bostrom 2012) (such as an easily ac-
cessible OFF button), but all such ideas have a similar weak-

19By equation (2) which is simply equation (3) with a tautology
as h.

20As it is a Bayesian agent.
21By equation (3).
22One idea could be to start with initial probability estimates for

C(u) and factual statements, and normalise them in some manner
to get the required equalities. But it’s not clear whether this can be
done in a general manner and whether this process is vulnerable to
outliers or extreme value.

23It may become necessary to restrict the possible h’s considered
in the equation.



ness: the AI would likely deduce the existence and format
of any precautionary measure, and plan in consequence.

Thus an off button would motivate the AI to ensure that it
took control of the OFF button before taking any suspicious
actions. This would still make the setup somewhat safer, but
not as safe as it would have been had the AI not adapted its
strategy to take the OFF button into account.

It was occasionally suggested that the AI be made to ig-
nore the button, by giving it the belief that the button would
never be pushed. There are two problems with that ap-
proach. The first is that ‘the button would never be pushed’
is a complicated concept, hard to define in basic terms. The
second is that this involves giving factually incorrect beliefs
to a potential superintelligence, a step with unpredictable
and potentially dangerous ramifications.

Instead, this author came up with the idea of making the
AI indifferent as to whether the button would be pushed or
not. This was an intervention on its values, not on its beliefs,
and thus did not involve any incorrect information. The con-
cept of ‘pushing the button’ was simplified: the setup was
imagined as a a button sending a shutdown signal along a
wire. At some point along the wire, a stochastic event would
either let the signal through (X) or block it (¬X). This event
was all that needed to be defined for the AI, and its utility
function could be tweaked24 to value X equally with ¬X .
Thus it would value a world in which it was shut down (us-
ing this method) equally with one in which it continued to
operate. Thus it would not act to protect itself from this kind
of shutdown. Then the probability of ¬X could be chosen to
be extremely low, thus guaranteeing a successful shutdown
in practice25.

Note that the AI has no motivation to cause the button to
be pressed – it is purely indifferent. Similarly, it has not
motivation to protect the button’s setup: it may dismantle it
if the AI needs extra raw materials. Thus indifference must
be combined with more active measures. But the fact that
the AI is not motivated to take out a key vulnerability can be
very valuable.

Other uses of indifference were soon discovered. Oracle
AIs (Armstrong, Sandberg, and Bostrom 2012; Yampolskiy
2012) are a design where an AI was confined to only an-
swering questions. The risk was that the Oracle could use
the contents of its answers to subtly manipulate the outside
world (in the extreme, it could attempt to convince those out-
side to ‘let it out’26). If, however, the Oracle’s answers were
passed through some stochastic process that had an infinites-
imal chance of erasing the message, then the Oracle’s utility
could be reset so that its values in worlds where the answer
was read (the world as it almost certainly would be) was set
to that of the world in which it wasn’t read (a world in which

24Crucially, such an intervention could be performed without
any need to understand the utility function to any great degree.

25It could be set to zero, but this might interfere with the AI’s
computation of counterfactuals.

26See the experiments by Eliezer Yudkowsky (see the AI-box
experiments on yudkowsky.net), and seprately by Justin Corwin
(see the SL4 mailing list archive), where they played the role of the
Oracle AI and convinced others to let them out, even when they are
motivated not to.

the Oracle’s answers cannot influence human behaviour).
Notice that the intervention is not symmetric. An AI

whose utility, given X , is reset to its utility, given ¬X , will
behave as if it thought it was impossible for X to happen.
‘As if’ meaning that such an AI would behave similarly to
an AI with an unmodified utility that also believed X was
impossible (without giving the AI factually wrong informa-
tion). Thus resetting the AI the opposite way (¬X to X
rather than X to ¬X) would have a very different conse-
quence (it would behave as if the shutdown always worked
or if its messages were always read).

Utility indifference in practice Assume that any world
in W can be specified by setting the values of a (possibly
infinite) collection of underlying physical variables. One of
these variables is whether X happened or ¬X did; thusW
decomposes into

WX tW¬X ,

whereWX is the subset of worlds where X happened, and
W¬X the subset of worlds where ¬X did. Since a world
equivalent with a set of variable values, for every world
wX ∈ WX , there is a world w¬X ∈ W¬X (and vice versa)
defined by taking the variable values of wX and setting X
to ¬X (and vice versa).

Then one method for achieving indifference is simply to
replace an initial utility function U with U ′ defined by:

U ′ (w¬X
)

= U
(
w¬X

)
U ′ (wX

)
= U

(
w¬X

)
,

i.e. reset the utility of wX to be that of w¬X . This will ob-
viously achieve indifference.

There are other ways of achieving it, though. Let P be a
partition ofW , subject to the following two properties:

1. If wX ∈ S ∈ P , then w¬X ∈ S.

2. If w ∈ S ∈ P , then P (w|S) = P (w|e, S) for any evi-
dence e the AI could encounter before event X (or ¬X).

Property (2) means that the AI cannot change its estimate of
the relative properties of worlds in S before the event X –
essentially the internal structure of S is fixed until that point.
Then define, for any set T :

E(U(T )) = E(U(T )|T ) =
∑
w∈T

P (w|T )U(w).

This allows us to give an other method for constructing in-
difference (which may be easier in practice) given any such
partition P . Define U ′ as:

U ′ (w¬X
)

= U
(
w¬X

)
(4)

U ′ (wX
)

= U
(
wX
)
− E

(
U
(
SX
) )

+ E
(
U
(
S¬X

) )
.(5)

Why does this work? None of the agent’s decisions can
affect, before X , the relative probabilities of worlds inside
any set S ∈ P , so the agent is effectively reasoning with the
utility of these whole sets. Then notice that E

(
U ′(SX)

)
=



E
(
U ′ (S¬X

) )
as

E
(
U ′(S)

)
=

∑
wX∈SX

P (wX |SX)U ′(wX)

=
∑

wX∈SX

P (wX |SX)
[
U(wX)

−E
(
U
(
SX
) )

+ E
(
U
(
S¬X

) )]
=

∑
wX∈SX

P (wX |SX)U(wX)

+

[ ∑
wX∈SX

P (wX |SX)

]
·

[
−E
(
U
(
SX
) )

+ E
(
U
(
S¬X

) )]
= E

(
U
(
SX
) )

−1 · E
(
U
(
SX
) )

+ 1 · E
(
U
(
S¬X

) )
= E

(
U
(
S¬X

) )
= E

(
U ′ (S¬X

) )
.

Since P (wX |SX) is unaffected by any evidence the agent
could receive before X (or ¬X), this equality always holds,
prior to X . Thus for any such set S, the agent will value
X happening equally with ¬X: it has become indifferent to
this particular outcome. Since these sets form a partition of
the possible worlds, it will always be indifferent.

Value-change indifference
The author subsequently realised that a modification of the
previous formalism allows agents to update their values
(utility function) while being indifferent to the process of
change.

Equation (5) has two components: a subtraction term (re-
moving the expected utility given X) and an addition term
(adding the expected utility given ¬X)27. Updating values
will proceed similarly.

Let u and v be two different utility functions. The agent
is currently following utility u, and receives a signal telling
it to change to utility v. As before, we assume that the sig-
nal passes through some stochastic process, that is almost
certain to let the signal though in practice, but has some
infinitesimal chance of blocking it (and blocking it perma-
nently – no further transition is allowed). For clarity, let
u→ v be the event that the signal gets through (almost cer-
tain) and u → u the event that the signal is blocked (in-
credibly unlikely). We wish to make the agent indifferent
to whether the signal is sent or not. Thus we make it a U
maximiser, where U is a dynamic utility function currently
defined as:

U = u+ C,

where C is some past constants. Upon receiving the signal,
U will be updated to

U = v − E(v|u→ v) + E(u|u→ u) + C. (6)

27Though of course either term could be negative.

Thus the utility function is decreased by the expectation of
its new utility function (given that the utility function ac-
tually changes) and increased by the expectation of its old
utility function (given that the utility didn’t change). The
E(u|u→ u) term ‘rewards’ it for shifting away from u, and
the E(v|u → v) term ‘penalises’ it for moving to v. Note
that this formula requires either that the utility functions be
bounded, or at least that the agent only be capable of pro-
ducing bounded utility.
Theorem 4.1. The agent will act as a pure u maximiser be-
fore the transition, and shift seamlessly to a pure v max-
imiser after. It gains no utility for either blocking or encour-
aging the transition.

This result flows from a few intermediate results:
Lemma 4.2. Suppose the agent is currently a u-maximiser,
but will soon transition to being either a v or w maximiser.
It can manipulate its environment to ensure it becomes one
or the other, at no cost or gain to u.

Then it is indifferent to whether it becomes a v or w max-
imiser.

Proof of Lemma. Notice that we could have set w = u,
demonstrating that it is indifferent to transitioning out of u
or not.

For the proof, note that the E(u|u → u) term in equation
(6) is unchanging whether it chooses to transition to v or
w (since by assumption there is no u cost or benefit to the
choice process). If it transitions to v, the remaining non-
constant terms are

v − E(v|u→ v).

However, the expectation value of this term, given that it
becomes a v-maximiser at transition, is

E(v − E(v|u→ v)|‘agent becomes a v-maximiser’)
= E(v − E(v|u→ v)|u→ v)

= E(v|u→ v)− E(v|u→ v)

= 0.

The same similarly holds for w. Thus the agent does not
expect to gain any more utility from transitioning to v than
to w. �
Lemma 4.3. Suppose the agent is currently a u-maximiser,
but can take immediate actions to change the value of v
(none of these actions changes the value of u). It knows
it will soon be a v-maximising agent.

Then it will remain indifferent between those actions.
Proof of Lemma. The proof is almost identical to the

previous proof. Whatever v-changing at actions it take, at
transition, the E(u|u → u) term in equation (6) is constant
(since these actions do not affect u by definition). Let a
be one of these actions; then the only non-constant terms at
transition are:

E(v − E(v|u→ v)|a, ‘agent becomes a v-maximiser’)
=

E(v − E(v|u→ v)|a, u→ v)

=

E(v|a, u→ v)− E(v|a, u→ v)

= 0.



Thus the gain (or loss) from any such action is canceled out,
making the agent indifferent between them.

�

Lemma 4.4. Suppose the agent can take immediate action
to increase the expected value of u by a, or delay for a while
and increase the expected value of u by b (no other options
are possible). However, in the interim period, its utility will
have changed to v (and it knows this), so will no longer be a
u-maximiser.

Then it will act now if a > b and will delay action (hence
never taking action) if a < b.

Proof of Lemma. This lemma is important, as it shows
that the agent will not treat transitions of utility as special
times, and will continue maximising its current utility as if
it expected it to be unchanging, not thinking strategically
about the transition.

Without loss of generality, assume that the expected value
of u is 0 if the agent takes neither action. Then consider the
the transition equation (6). The v and E(v|u → v) terms
cancel out in expectation (just as in the proofs of the previ-
ous lemmas), so the agents behaviour is determined exclu-
sively by the E(u|u → u) term, which it will thus seek to
maximise.

If the agent acts now, this term will become a. This is
because the agent would have already generated an extra a
expected utility for u, and, were it to stay as a u-maximiser
(u → u), it would have no further potential to increase this.
If the agent doesn’t act now, that term will become b, as the
agent would later have acted to generate an extra b expected
utility for u, if it had stayed a u-maximiser. The result fol-
lows. �

Putting all these proofs together establishes the theorem.
Note that the actions of the agent can be defined by the

following formula, for a sequence {ut} of utilities28:

argmax
a∈A

E(ut|a, ut → ut),

with ut → ut denoting the (extremely unlikely) event that
the transition ut to ut+1 fails permanently.

Note also that each transition does not change the ex-
pected value of U . That is because the expectation of
u (given u → u or equivalently given that the agent’s
utility never changes29) is the same as the expectation of
v − E(v|u → v) + E(u|u → u) (given u → v). Con-
sequently, the initial expected value for U is the expected
value of an unchanging u0.

Discussion of Value-change indifference
This seems to be the ideal value selecting agent. It will act
to follow its preferences with perfect assiduity, but remain

28Not necessarily a pre-defined sequence, just using some tran-
sition rule.

29Astute readers may have noticed that this is not an exact equiv-
alence; there are some situations (multi-agent social situations as a
likely candidate) where u → u (a specific transition failure event)
might not be equivalent with general ‘unchanging u’. However,
any agent can be penalised in social situations for having or not
having any particular motivational structure, so this is a general
problem, not specifically with this value selection design.

completely indifferent if these values were to change in the
way prescribed by its program. That last point is important –
we’d want the agent to resit illegitimate value manipulation.
This seems a partial solution to the value selection problem
(the other, much bigger, part of the challenge, is to make the
agent converge on values that are human-friendly(Bostrom
2014)).

As mentioned in section 3, this approach allows only in-
difference. Preference for active learning of values (such as
would make sense for an initially fast-learning agent) can
be added to the framework. It would destroy the carefully
balanced indifference. But, compared with a general value
selecting agent, the effect could be precisely estimated and
quantified.

Paper (Soares et al. 2015) presents some other issues with
the indifference approach30, that may be resolvable with a
small tweak to the indifference framework. Note that the
agent will be willing to sacrifice anything that it may value
in the future for a small epsilon of extra value now. This is
a feature of the setup, not a bug (indifference requires this),
but may still be an undesirable behaviour. See (Soares et al.
2015) for more details.

5 Discussion
Constructing a well behaved value selecting agent immune
to motivated value selection – one that is capable of learning
new values while still acting on its old ones, without interfer-
ence between these two aspects – is an important unsolved
problem. This paper presented the requirements for such a
value selecting agent, if values are presented in the form of
utility functions.

The agent starts with a probability distribution over the
possible correctness C of possible value systems/utility
functions. To avoid problematic motivated value selection,
it should be designed so that, if A were its actions, U it pos-
sible utility functions, andW the set of possible world, then
it would choose its actions as:

argmax
a∈A

∑
w∈W

P (w|e, a)

(∑
u∈U

u(w)P (C(u)|w)

)
,

subject to

∀u∀a ∈ A : E
(
P (C(u)|h, a)

)
= P (C(u)|h),

for all statements h. The first equation can be generalised
(for none utility-based agents) to the requirement that the
agent use its future values to assess its future actions; the
second to the requirement that it cannot profit my manipu-
lating how it updates its values. Specifically, that if it knows
how its (conditional) values will change, then it will already
have changed them. This second requirement can be seen as
a ‘conservation of expected ethics’ law.

The structure may be too rigid to construct complex
agents, however. If we drop the requirement that the agents
values be expressed as a probability distribution over possi-
ble utility functions, we can construct an explicit model for

30Mainly that the agent might not be motivated to preserve its
value updating infrastructure, or could create subagents without the
value updating component.



a general value selecting agent. This agent comes equipped
with a meta utility function U (equal to a given utility func-
tion at any given time) combined with some constant terms.
When the agent is called upon to update its utility u to an-
other utility v according to the value selecting process, it will
update as:

u→ v − E(v|u→ v) + E(u|u→ u).

These constant terms ensure that the agent will act as a pure
u maximiser before the transition, and shift seamlessly to a
pure v maximiser after. It gains no utility for either blocking
or encouraging that transition.

The big question then becomes the process of making the
agent converge to ultimately desirable values.
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