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1 Abstract

Latitudinal and elevational biodiversity gradients have inspired dozens of hypotheses to explain

their existence. Among these, some have suggested that the geometry of environmental variation2

may promote species-richness gradients, although a mathematical model has yet to appear that

fully captures this hypothesis. In this technical report, we provide the mathematical results that4

support a new “environmental geometry” model that fills this gap. The model characterizes species

ranges by a maximal range extent and by species’ environmental niches, and places those ranges6

onto the simplified environmental geometries of a sphere or cone. The model generates surprising

and nuanced predictions for species-richness gradients, including low-latitude (but non-Equatorial)8

maxima and mid-latitude inflection points in latitudinal diversity gradients, and low-elevation max-

ima in elevational diversity gradients. These results suggest that environmental geometry may play10

a deeper role in driving biodiversity gradients than previously appreciated.

2 Introduction and background12

The latitudinal gradient in biological diversity is one of the most pervasive, conspicuous, and

ancient characteristics of life on Earth (Crame, 2001; Hillebrand, 2004). Decades of research have14

identified over 30 potential mechanisms for Earth’s latitudinal diversity gradient (LDG) (Lomolino

et al., 2010; Brown, 2014), including ecological (reviewed in e.g. Willig et al., 2003), evolutionary16

(e.g. Jablonski et al., 2006) and historical (reviewed in Mittelbach et al., 2007) explanations. While

a myriad of interacting mechanisms likely contribute to Earth’s LDG (Colwell, 2011), scientific18

debate about the merits and relative importance of these proposed mechanisms continues with

vigor.20

In recent decades, a line of argument has emerged that suggests that biodiversity gradients

(including Earth’s LDG) may arise in part because of geometric constraints on the placements of22

species ranges (Colwell & Hurtt, 1994; Willig & Lyons, 1998; Lees et al., 1999; Colwell & Lees,

2000). This hypothesis suggests that when species ranges are placed randomly within a bounded24

territory, the overlap of species ranges will be greatest near the center of the territory, and will

decline towards the boundaries of the territory. If species diversity is determined by (or at least26

positively correlated with) the overlap of species ranges, then biological diversity will have a similar

mid-domain peak. Such a phenomenon has been called the mid-domain effect (MDE; Colwell & Lees28

(2000)). The first mathematical descriptions of the MDE involved linear species ranges placed along
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a linear territory (Colwell & Hurtt, 1994; Lees et al., 1999), and more recent work has explored the30

placement of two-dimensional ranges on flat, two-dimensional territories (e.g. Jetz & Rahbek, 2001;

Davies et al., 2007; Rangel et al., 2007; Colwell et al., 2009). Most geometric constraint models have32

(often intentionally) ignored environmental gradients within the domain. Two notable exceptions

are Connolly (2005), who investigated a linear territory with an environment that was symmetric34

about its midpoint, and Rangel & Diniz-Filho (2005), who studied a linear domain with a monotonic

gradient in environmental suitability. Both studies showed that environmental variation can modify36

the predictions of MDE models depending on the strength of the environmental gradient, although

both still predicted that species richness would peak within the interior of the domain.38

While Connolly (2005) and Rangel & Diniz-Filho (2005) offer tantalizing suggestions that envi-

ronmental variation can modify the predictions of range-overlap models in interesting ways, neither40

model adequately captures the geometry of environments on Earth, to the extent that environment

is determined by latitude. Indeed, many ecologists (most notably Terborgh (1973) and Rosenzweig42

(1995)) have stressed the importance of Earth’s geometry for driving the LDG. Tropical environ-

ments occupy a greater contiguous area than any other ecoregion on Earth, for three reasons. First,44

parallels of latitude have the greatest circumference at the Equator, and become shorter as one ap-

proaches the poles. Second, the tropical regions of the Northern and Southern hemisphere form one46

contiguous climate belt, while temperate and polar regions of the Northern and Southern hemi-

sphere are disjunct. Third, as Terborgh (1973) first observed, the latitudinal temperature gradient48

is non-linear, in the sense that the rate of change of temperature with respect to latitude becomes

steeper as one moves from low to high latitudes. Terborgh (1973) and Rosenzweig (1995) (among50

others) have suggested that the greater contiguous area of the tropics is a major driver of Earth’s

LDG, because larger area leads to larger population sizes, which in turn promote speciation rates52

and reduce extinction rates.

In this contribution, we describe the first model (of which we know) for biodiversity that fully54

accommodates environmental gradients on the surface of an Earth-like sphere. The model assumes

that species ranges are limited by dispersal (and thus have a maximal radius) and by fidelity56

to an environmental niche, and follows other range-overlap models in equating species diversity

with the overlap of species ranges. We dub our model the “environmental geometry” model. As58

we will see, the model illuminates how Earth’s latitudinal environmental gradient can drive a

LDG, and generates testable and surprising predictions about the shape of such gradients. The60

model can in fact be applied more generally than to just a sphere, although the mathematical
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details differ depending on the geometry considered. We also use the model to explore elevational62

diversity gradients (EDGs) on mountainsides by applying the model to a cone. Admittedly, many

mountains (especially those created by tectonic uplift) have complicated shapes, but we suggest64

that the simplified geometry of a cone is a useful starting point for investigating EDGs.

This model advances our understanding of how dispersal limitation and environmental niche66

fidelity can drive biodiversity along environmental gradients in two important ways. First, linear

geometries are simply unable to capture the full geometric implications of latitudinal and elevational68

environmental gradients. As we will show, these geometries generate predictions that have not

been available on linear territories. Secondly, by modeling environmental gradients on a sphere,70

the model eliminates the need to impose a boundary on the habitable territory. The MDE relies

crucially on the existence of a boundary (Colwell & Hurtt, 1994). While some territorial boundaries72

are incontrovertible (e.g., land / sea interfaces), the need to invoke a boundary for Earth’s LDG

is unsatisfying. Colwell & Hurtt (1994) originally took their boundaries to be the “northern and74

southern limits of habitable latitudes ... for a particular group of organisms”. While many taxa

do indeed have northern and southern range limits (that is, are limited to latitudes below a certain76

threshold), restricting the model to species whose ranges are limited thusly inherently restricts the

model to taxa with non-polar niches. How might we account for taxa with polar niches, that is, taxa78

whose ranges are limited to latitudes above a certain threshold? To be clear, we do not question

the logic behind the MDE on genuinely bounded territories, nor do we dispute that most known80

taxa have physiologies that restrict their ranges to below a certain latitude. However, the MDE’s

implicit restriction to non-polar taxa leaves it wanting as an explanation for the LDG. With the82

model below, we show that the geometry of Earth’s latitudinal environmental gradient can generate

an LDG even when all environments are equally suitable for life.84

The rest of this report describes the mathematical foundations of our model. We discuss linear,

conical and sphereical territories; the former two are interesting both in their own right, and for86

developing intuition about the results on the sphere. The beginnings of this theory were described

in Andrew Snyder-Beattie’s 2013 MS thesis (Snyder-Beattie, 2013). The ecological consequences88

of our model will be explored more fully in future work.

3 Basic notation90

Let A represent a geometry (e.g., line segment or surface). Generically, let a, b ∈ A be two points

on that geometry. Let g : A 7→ [0, 1] define the environment at each point in A. Throughout,92
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g will depend on only one dimension of A, regardless of the actual dimensionality of A. Let

d(a, b) : A × A 7→ R+ define the distance between any two points in A. Loosely, d(a, b) is the94

shortest path between a and b that does not leave A. (So, for example, if A is the surface of a

sphere, then d(a, b) is the great-circle distance between any two points on that surface. It is not96

the distance given by connecting a and b through the interior of the sphere.) Finally, we let x

generically denote the position along a transect of interest on A.98

The following geometries and coordinate systems are considered:

The line. The line segment is a useful context for developing ideas. We consider the unit interval100

x ∈ [0, 1] for a constant or unidirectional gradient, or the interval x ∈ [−1, 1] for an internally

reflected gradient. The distance is the obvious d(x, y) = |x− y|.102

The surface of a cone. The cone is the basic geometry for EDGs on mountainsides. The coor-

dinates for a cone are (x, φ) ∈ [0, 1]× [−π,+π], where x is the position along a base-to-peak104

transect on the cone’s surface, with x = 0 corresponding to the base and x = 1 corresponding

to the peak. The coordinate φ is the compass direction with respect to “east”. The envi-106

ronment g (·) depends only on x. Let α ∈ (0, π/2] be the opening angle of the cone, such

that α = 0 corresponds to an infinitely steep cone and α = π/2 corresponds to a disc. Let108

h = cosα be the height of the cone, and r = sinα be the radius of the cone’s base. As we will

see, α is only relevant for EDGs under some circumstances. The cone / disc is also a useful110

geometry for contemplating LDGs at high latitudes, as a pole is topologically similar to the

peak of the cone (or center of the disc).112

With cones or discs, we can distinguish between “isolated” and “embedded” cones, where

isolated cones are those where the edge forms a hard boundary for life, and embedded cones114

are those where the base sits on a surrounding landscape that has the same environment as

the cone’s base. Loosely, we might think of isolated and embedded cones as reasonable first116

models for oceanic and terrestrial mountains, respectively. In this report, we only consider

isolated cones and discs. We do so because results on the embedded cone or disc are sensitive118

to the assumptions that one makes about the properties of the species on the embedding

landscape. Thus, while we comment qualitatively on the differences that one would expect120

between isolated vs. embedded cones, we avoid a quantitative study.

For isolated cones and discs, d (·, ·) is equal to the Euclidean distance on the unwrapped cone.122

The surface of a sphere. The surface of a sphere is the basic geometry for LDGs. The coordinate
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system is (x, φ) ∈ [−π/2,+π/2]×[−π,+π]. The first coordinate, x, is the latitude. The second124

coordinate, φ, is the longitude. The environment g (·) depends only on latitude. The distance

d (·) is a great-circle distance.126

We will also consider cones with uninhabitable zones at their tops, and spheres with uninhab-

itable ice caps at their poles. When there is an uninhabitable region, we use x̃ to denote the128

boundary of that region. For a cone or disc, the habitable region will be x ∈ [0, x̃]. For the surface

of a sphere, the habitable region is x ∈ [−x̃, x̃].130

The environment satisfies the following properties:

• (E1). The environment g (·) depends only on a single coordinate (namely, x), and thus can132

be written as g(x).

• (E2). If x < 0 is allowed, then the environment is symmetric, i.e., g(−x) = g(x).134

• (E3). The environment is monotonic with respect to |x|.

We will also often require the stronger condition:136

• (E4). The environment is strictly monotonic with respect to |x|.

Conditions (E1)–(E4) allow us to define the (non-negative) inverse as g−1 : [0, 1] 7→ [0, xmax],138

where xmax is the maximum value of x, and g−1 always maps to the non-negative values of x.

Finally, although it is not critical, without loss of generality we will assume140

• (E5). The environment is strictly increasing across x > 0, with g(0) = 0 and g(xmax) = 1.

The only environments we will consider that do not satisfy (E4)–(E5) are constant environments.142

All other environments satisfy (E1)–(E5).

We will work with the following environments:144

• On the line:

– A constant environment: g(x) = c, where x ∈ [0, 1], and c is some constant in [0, 1].146

– A unidirectional environment: g(x) = x, where x ∈ [0, 1].

– A reflected environment: g(x) = |x|, where x ∈ [−1, 1].148

• On the disc / cone:
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– A linear environment: g(x) = x for x ∈ [0, 1].150

• On the surface of a sphere:

– A cosine environment: g(x) = 1− cosx. (We use 1− cosx so that g(x) is an increasing152

function of x.)

– A (reflected) linear environment: g(x) = |2x/π|. This environment does not have a154

biological interpretation, but is useful for understanding the relationship between the

line, cone and sphere geometries.156

Species ranges are constructed on the basis of three characteristics. They are:

• Each range has an origin, denoted as ao ∈ A. A species’ optimal environment is simply the158

environment at its range origin, i.e., g(ao).

• Each range is limited by an environmental tolerance, denoted as γ ∈ [0, 1]. A range160

originating at ao will be a subset of the locations {b : |g(b)− g(ao)| ≤ γ}. Species with larger

γ can tolerate a broader range of environments.162

• Each range has a distance limit, denoted as δ ≥ 0. A species range can extend at most a

distance δ from the range origin. That is, given an origin ao, a species range will be a subset164

of points b where d(ao, b) ≤ δ.

The triple (ao, γ, δ) fully defines the characteristics of a species. Given these characteristics, we166

can define a species range in the following way. Let

E = {b : |g(b)− g(ao)| ≤ γ}

denote the collection of points that fall within a species’ environmental tolerance, and let168

D = {b : d(ao, b) ≤ δ}

denote the collection of points that fall within a species’ distance limit. One possible definition

of a species’ range is the intersection E ∩ D. However, this definition allows for non-contiguous170

ranges. An easy way to see this is to consider the reflected linear environment on [−1, 1], and to

consider a range originating at (say) xo = 0.5, with a small environmental tolerance (say, γ = 0.1)172

and a large distance limitation (say, δ = 2). For this species, E ∩ D = [−.6,−.4] ∪ [.4, .6], that

is, two blocks of allowable habitat separated by a large swath of uninhabitable territory. We do174
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not allow such a range. (One biological justification for insisting that ranges must be contiguous

is that a species with a non-contiguous range is likely to evolve into multiple separate species over176

evolutionary time.)

In our model, we define a species range as (D1): the contiguous subset of E ∩ D that contains178

the range origin, ao. In the example above, the species’ range would thus be [.4, .6]. Put another

way, the range consists of all points in D that are connected to ao by a path that lies entirely in E .180

For one-dimensional geometries (i.e., the line), the definition (D1) is the only reasonable option.

For two-dimensional geometries, a second definition is viable. The essential distinction is that, in a182

two-dimensional geometry and under (D1), the distance constraint is enforced “as the crow flies”,

without regard to whether or not the habitat along the crow’s path lies within E . Thus, the shortest184

path between a point in a species range and the range origin that passes through only E may have

length > δ. Thus, on two-dimensional geometries, we could also define a species range as (D2): the186

contiguous subset of E ∩D that contains the range origin, ao, and for which any point in the range

is connected to the range origin ao by a path that is no longer than δ and lies entirely within E .188

In what follows, we use (D1). (D2) would seem to have a stronger biological justification, but the

math is considerably more tractable with (D1). (In fact, the math with (D2) is likely to be very190

hard, and thus results will likely only be available with simulation.)

Next, we place a probability distribution on the triple (ao, γ, δ). For simplicity, we assume192

that these three characteristics are independent, though this assumption could be relaxed if two or

more of the characteristics were thought to be correlated. Generically, let f (·) denote a probability194

density, so that f (ao), f (γ) and f (δ) are the probability densities associated with each of the three

characteristics. For example, if we want to assume that range origins are uniformly distributed, the196

corresponding densities are f (x) = 1 or = 1/2 for lines on [0, 1] or [−1, 1], respectively; f (x, φ) =

(1/4π)−1 cosx for the sphere, and f (x, φ) = (1− x)/ (π sinα) for the cone or disc.198

Let S(a) denote the species richness at any point a ∈ A. Simply, S(a) is the fraction of species

ranges that overlap the point a. Throughout, if we are interested in how species richness varies200

across a transect indexed by x, we will write that richness as S(x).

Finally, we make one additional observation that will prove useful later. We say that an envi-202

ronment communicates if, for all a, b ∈ A, and for a given choice of γ and δ, a range originating

at a includes b if and only if a range originating at b includes a. We conjecture that, under defi-204

nition (D1) for species ranges, a necessary and sufficient condition for communication is that, for

all a, b ∈ A, there exists a path (of arbitrary distance) that connects a and b that passes only206
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through habitat whose environment is intermediate between g(a) and g(b); that is, ∀x on the path,

g(a) ≤ g(x) ≤ g(b) (if, without loss of generality, g(a) ≤ g(b)). It is clear that the above condition208

is sufficient for communication under (D1), although the necessity is less clear. Examples of en-

vironments that communicate under (D1) are the line segment with a unidirectional environment,210

and a disc / cone with a linear environment. Examples of environments that do not communicate

under (D1) are the line with the internally reflected environment, and the Equatorial regions of the212

surface of a sphere. Communication is much harder under (D2), and indeed may only be available

for trivial environments (such as a constant environment).214

Communication is important for the following reason. Usually, we will find the species richness

at a location x by integrating the density of range origins over the region of origins for ranges that216

will include x. However, in a communicating environment, this region of integration is identical to

the range originating at x. Thus, we can equivalently find the species richness at x by integrating218

the density of range origins over the area of a single range originating at x. This equivalence does

not hold in non-communicating environments.220

We are now ready to begin deriving results.

4 Results for the line222

A line segment is a simple geometry that allows us to develop intuition. We will consider a line

segment with a constant environment (to establish a baseline), a line segment with a unidirectional224

environment (a communicating environment), and a line segment with an internally reflected en-

vironment (a non-communicating environment). The line segment with an internally reflected226

environment is a useful first model for a pole-to-pole transect running along a meridian of longi-

tude, although we will ultimately show that the two-dimensional surface of a sphere is a more useful228

geometry for latitudinal richness gradients.

First consider the simple case of a line running from x = 0 to x = 1 with a strictly monotonic230

environment that satisfies (E1) – (E5). Let S(x; γ, δ) give the species richness at x if all species

have environmental tolerance γ and distance limitation δ. S(x; γ, δ) is given by the integral232

S(x; γ, δ) =

∫ U(x)

L(x)
f(y) dy (1)

where f(·) is the density of range origins, and L(x) and U(x) are the locations closest to 0 and 1,

respectively, for which a range originating at that location would overlap x. Because the environ-234

ment communicates on [0, 1], L(x) and U(x) can also be interpreted as the endpoints of the range
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originating at x.236

To find L(x) and U(x), consider a range originating at y ∈ [0, 1], with distance limit δ and

environmental tolerance γ. This species will have a range that overlaps x if and only if both of the238

following conditions are true. First, d(x, y) = |x− y| ≤ δ, that is,

(x− δ) ∨ 0 ≤ y ≤ (x+ δ) ∧ 1.

For consistency with later results, we re-write the above using xmax instead of 1 for the maximum240

value of x, that is,

(x− δ) ∨ 0 ≤ y ≤ (x+ δ) ∧ xmax.

Second, the environment at x must fall within the species environmental tolerance, that is,242

(g(x)− γ) ∨ 0 ≤ g(y) ≤ (g(x) + γ) ∧ 1

or

g−1((g(x)− γ) ∨ 0) ≤ y ≤ g−1((g(x) + γ) ∧ 1).

Combining the distance and environmental constraints yields244

{(x− δ) ∨ 0} ∨ g−1((g(x)− γ) ∨ 0) ≤ y ≤ {(x+ δ) ∧ xmax} ∧ g−1((g(x) + γ) ∧ 1).

Because g−1(0) = 0 and g−1(1) = xmax, the above can be written more simply as

(x− δ) ∨ g−1((g(x)− γ) ∨ 0) ≤ y ≤ (x+ δ) ∧ g−1((g(x) + γ) ∧ 1).

Thus, we have the following formula for L(x) and U(x):246

L(x) = (x− δ) ∨ g−1 ((g(x)− γ) ∨ 0)

U(x) = (x+ δ) ∧ g−1 ((g(x) + γ) ∧ 1) . (2)

Fig. 1a shows how species richness varies if the environment is constant, all species have distance

constraint δ = 1/3, and range origins are uniformly distributed (f(x) = 1). (Note that when the248

environment is constant, the environmental constraint γ is irrelevant. Note also that g−1 does not

exist with a constant environment, although it can be easily shown in this case that L(x) = (x−δ)∨0250

and U(x) = (x+ δ)∧ 1.) Fig. 1c shows results for a smoothly varying environment, g(x) = x, when

γ = δ = 1/3.252
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Figure 1: Species richness gradients on a line. Top row: constant environment; bottom row:
monotonic environment (g(x) = x). Left column: S(x; δ, γ) for a given environmental tolerance γ
and distance limit δ. Right column: S(x), assuming that δ and γ are independently and uniformly
distributed on [0, 1]. Grayscale bars at the top of each panel depict the environmental gradient,
with different shades of gray corresponding to different environments.
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If species vary in their distance constraints or their environmental tolerances, we can find S(x)

by integrating S0(x; γ, δ) over the distributions of γ and δ:254

S(x) =

∫ ∫
S(x; γ, δ)f(γ)f(δ) dδ dγ (3)

For either the constant environment or the unidirectional environment g(x) = x, the integral above

has a simple analytical solution if δ, γ, and range origins are all independently and uniformly256

distributed on [0, 1]. For the constant environment, we obtain

S(x) = 1/2 + x(1− x)

(Fig. 1b). For the environment g(x) = x, we obtain258

S(x) = 1/3 + x(1− x)

(Fig. 1d). These reproduce the symmetric, concave-down relationship that is characteristic of the

MDE (Willig & Lyons, 1998; Lees et al., 1999).260

Now consider the reflected environment, that is, the line on x ∈ [−1, 1], where g(x) = |x|. With

a reflected environment, it is helpful to separate S(x) into two parts. Let S0(x) be the species262

richness at x resulting from ranges originating on the same side of the reflection point as x. In

contrast, let S1(x) be the species richness at x resulting from ranges originating on the opposite264

side of the reflection point. Thus, S(x) = S0(x) + S1(x).

For a given γ and δ, S0(x; γ, δ) is just S(x; γ, δ) from eq. 1 above. Finding S1(x; γ, δ) requires266

a bit more thought. Without loss of generality, suppose x > 0. For a range originating at y < 0,

that species’ range will overlap with x if and only if all three of the following conditions hold:268

• (i). x is within the species’ distance constraint, i.e., d(x, y) ≤ δ.

• (ii). The environment at x is within the species’ environmental tolerance, i.e., |g(x)−g(y)| ≤ γ.270

• (iii). All points between x and y lie within the species’ environmental tolerance. If we assume

that the environmental function is strictly increasing across x ∈ [0, xmax], this is equivalent to272

requiring that the environment at the reflection point (g(0)) is within the species tolerance:

|g(0)− g(y)| ≤ γ.274

In the case that d(x, y) = |x− y| and g(x) satisfies conditions (E1)–(E5), then (after some algebra)

it can be shown that these conditions are equivalent to276

−g−1(γ) ∨ (x− δ) ≤ y ≤ −g−1(0 ∨ (g(x)− γ)).
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We write the left-hand side of the equation above as

U1(x) = −g−1(γ) ∨ (x− δ)

and the right-hand side as278

L1(x) = −g−1(0 ∨ (g(x)− γ))

We define the above so that L1 represents the range origin closest to the reflection point that will

support a range that overlaps x, and U1 represents the range origin furthest from the reflection280

point that will support a range that overlaps x. Note that it is not guaranteed that we will have

U1(x) < L1(x); when U1(x) ≥ L1(x), then there is no spillover, and S1(x; γ, δ) = 0. In the special282

case when g(x) = |x|, then U1(x) simplifies to −γ ∨ (x − δ), and L1(x) simplifies to 0 ∧ (γ − x).

Thus,284

S1(x; γ, δ) =

{∫ L1(x)
U1(x)

f(y) dy if U1(x) < L1(x)

0 otherwise.
(4)

(When x = 0, we have S0(x = 0; γ, δ) = S1(x = 0; γ, δ). Thus, which component we label as S0 vs.

S1 is irrelevant.)286

Figure 2a,b shows S(x; γ = 1/2, δ = 1/4) and S(x; γ = 1/4, δ = 1/2), respectively, for the

environment g(x) = |x| and for a uniform distribution of range origins. These two cases provide

an interesting contrast. When species ranges are limited primarily by distance (that is, δ is small

and γ is large), then the internal reflection point has little to no impact on species ranges, and thus

S(x) recapitulates the MDE (cf. Fig. 1a,c). However, species ranges are limited predominantly by

environmental tolerance (γ small and δ large), then the peak of species richness occurs close to,

but not at, the reflection point. We explain this phenomenon in more depth below. To find S(x),

we again integrate S(x; γ, δ) over some distribution for γ and δ:

S(x) =

∫ ∫
S(x; γ, δ)f(γ)f(δ) dδ dγ.

Figure 2c shows S(x) with γ and δ independent and uniformly distributed on [0, 1].

The obvious and key difference between S(x) for the internally reflected environment vs. S(x) for288

either the constant or unidirectional environment is that, for the internally reflected environment,

the peak of species richness may not occur at the midpoint of the domain. This occurs because the290

environment at the reflection point is no longer a “middle” environment; indeed, it is one of the

two most extreme environments. (The other environmental extreme occurs, of course, at the ends292

of the domain.) The reflection point can still be reached by ranges originating on either side of
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Figure 2: Species diversity gradients on an internally reflected environment with a uniform dis-
tribution of range origins. In all panels, the environment is g(x) = |x|. Solid lines show S(x),
the total species richness, and dotted lines show S0(x), the species richness resulting from species
ranges with origins on the same side of the reflection point as x. The difference between the solid
and dotted line gives S1(x), the species richness resulting from species ranges with origins on the
opposite side of the reflection point. A: When the distance constraint predominates, species rich-
ness is constant around the reflection point, and a pattern similar to a constant or unidirectional
environment appears (cf. Fig. 1a,c). B: When the environmental tolerance predominates, the peak
of species richness does not occur at the midpoint of the domain. C: Species richness assuming
uniform and independent distributions on δ and γ.

the reflection point, and thus species richness at the reflection point is greater than it is at either294

of the two ends of the domain. Locations that are close to but not on the reflection point can be

reached by ranges originating on the same side of the reflection point, and by ranges originating on296

the other side of the reflection point, as long as those species can tolerate the environment at the

reflection point. Put another way, species with range origins are sufficiently close to the reflection298

point can have ranges that “spill over” the reflection point and thus occupy suitable habitat that is

available on the other side of the reflection point. Thus, species ranges pile up at a location near to,300

but not exactly on, the midpoint of the domain. Figure 3 illustrates this “spillover” phenomenon.

The obvious motivation for a reflected gradient on Earth is a latitudinal transect that runs from302

pole to pole along a meridian of longitude. With all the necessary caveats and provisos, the above

results appear to predict that the species richness along such a transect should not peak at the304

Equator, but at low latitudes, with declines in species richness as one moves from the low-latitude

peak towards the Equator. To the best of our knowledge, this is the first geometric model to make306

such a prediction. However, a bit of thought yields a conundrum: what if one were to consider

transect that starts at one point on the Equator and follows a meridian of longitude through a pole308

to a second point on the Equator on the opposite side of the Earth from the first? This transect
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Figure 3: Range spillover leads to a peak in species richness that is offset from the reflection point
on an internally reflected environment. (In this Figure, we write the environment as g(x) = 1−|x|,
though the same result holds for g(x) = |x|.) The top row shows possible species ranges for three
different range origins, all with an environmental tolerance of γ = 0.25. The range originating at
x = −0.2 (center) has the largest possible range, because it can reach the reflection point and thus
“spill over” into suitable environments on the other side of the reflection point. Panels in the top
row do not impose a distance constraint. Bottom left: Many different species ranges, now with a
distance constraint of δ = 1/3. Points show range origins, dashed diagonal lines show the distance
constraint, solid horizontal lines show actual species ranges, and dotted horizontal lines (to the
extent visible) show how some possible species ranges are truncated by the distance constraint.
Species ranges shown in blue correspond to species origins shown in the upper panel. Bottom
center: Accumulation of all species ranges to give S(x; γ = 0.25, δ = 1/3).
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also has an internally reflected environment, and thus according to the results above, the peak in310

species richness should occur at high latitudes close to the poles!

The above situation is clearly unsatisfactory. The choice of whether to run a transect from pole312

to pole, or from one point on the Equator to the other on the Earth’s opposite side, is arbitrary.

Yet, results from the line suggest that the peak of species richness will depend on this arbitrary314

choice — a conundrum that must be resolved. To do so, we extend these results to two dimensional

geometries such as the surface of a sphere. We will work up to the sphere by first considering a316

disc and a cone, which are useful in their own right as geometric simplifications of mountains, and

which help build intuition about species richness in the vicinity of a pole on the sphere.318

5 Results for the cone or disc

Consider a cone or disc with a linear environment. Under definition (D1), range origins communi-320

cate on the cone or disc, and thus the bounds of integration in results for S(x) can be interpreted

as simply the maximal extent of a range for a range originating at x.322

Results for the cone follow from the observation that the cone can be ‘unrolled’. That is, imagine

cutting the cone along a line running from the apex to the westernmost point on the cone’s base.324

The cone can then be ‘unrolled’ to form a portion of a circle with radius 1 and total area 2π sinα,

where α ∈ (0, π/2] gives the opening angle of the cone. Distances on the cone correspond to simple326

Euclidean distances on the unwrapped cone. On the unwrapped cone, we use the coordinate system

(x, ϕ) ∈ [0, 1]× [−π sinα,+π sinα]. Here, x is the distance from the base of the cone to the apex328

(so that x = 0 corresponds to the base, and x = 1 corresponds to the apex), and ϕ is the compass

direction (on the unrolled cone) with respect to “east”.330

Returning to the (rolled) cone, let S(x, φ) denote the species richness at a location (x, φ).

Because all results will be invariant to φ, we will simply write this as S(x). As with the line,332

let S(x; γ, δ) be the species richness found at x if all species have environmental tolerance γ and

distance limit δ, and let S(x) indicate the species richness when either γ or δ take a non-degenerate334

distribution across species. In these coordinates, a uniform distribution of range origins is given by

f(x, φ) = (1− x)/(π sinα).336

We derive S(x; γ, δ) first. For the moment, assume that all species have environmental tolerance

γ and distance limitation δ. Let S(x, 0; γ, δ) be the proportion of such species whose ranges overlap338

the point (x, 0). Consider the collection of elevations y for which a range originating at (y, 0)

will overlap (x, 0). Let L(x) and U(x) be the smallest and largest elevations of this collection,340
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respectively. It turns out that L(x) and U(x) are exactly the same as they were for the line (eq. 2):

L(x) = (x− δ) ∨ g−1 ((g(x)− γ) ∨ 0)

and342

U(x) = (x+ δ) ∧ g−1((g(x) + γ) ∧ 1).

Now, given an elevation y ∈ [L(x), U(x)], let ϕy ∈ (0, π sinα] be the maximal angle (on the

unrolled cone) for which a range originating at (y, ϕy) will have a range that overlaps (x, 0). Using344

the law of cosines, it can be shown that ϕy is

ϕy = (π sinα) ∧ cos−1

[
−1 ∨ (1− x)2 + (1− y)2 − δ2

2(1− x)(1− y)

]
. (5)

Thus, our formula for S(x, 0; γ, δ) is

S(x, 0; γ, δ) =

∫ U(x)

L(x)

∫ ϕy

−ϕy

f(y,$) d$ dy

Plugging in f(y,$) = (1− y)/(π sinα) gives346

S(x, 0; γ, δ) =

∫ U(x)

L(x)

∫ ϕy

−ϕy

(1− y)

π sinα
d$ dy

=

∫ U(x)

L(x)

2(1− y)ϕy
π sinα

dy (6)

Figure 4 shows several solutions for S(x) for three different values of α. One interesting aspect of

this Figure is that, when the environmental constraint is more limiting than the distance constraint,348

and when the cone is not too steep (panels B and E), there is a local maximum in species richness

at, but not near, the apex of the cone. This feature will re-appear when we consider LDGs in350

the neighborhood of a pole on the sphere. Note that comparisons among different values of α are

complicated by the fact that the mean distance between any two randomly selected points on the352

cone shrinks as α becomes smaller (i.e., the cone becomes steeper). This suggests that to isolate

the effect of the cone’s steepness on species diversity gradients, the distance constraint δ should be354

scaled in accordance with α. We have yet to determine what the proper scaling relationship is, and

thus one should be mindful that species ranges become larger relative to the available surface area356

of the cone as α decreases in Fig. 4.

If we take the cone as a first model for a mountain, it may stand to reason that environmental358

gradients will be much more important in determining species ranges than the distance limit. This

suggests that it may be useful to relax the distance limit on the cone, and investigate EDGs when360
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Figure 4: Species diversity gradients on a cone with a linear environment (g(x) = x for x ∈ [0, 1])
and a uniform density of range origins. Top row: A flat cone (that is, a disc). Middle row: A
moderately steep cone (with α = π/4). Bottom row: A very steep cone (α = π/16). Left column:
All species are more limited by distance (δ = 1/4) than by environmental tolerance (γ = 1/2).
Center column: All species are more limited by environmental tolerance (γ = 1/4) than by distance
constraint (δ = 1/2). Note the “hump” near the peak in panels B and E. Right column: Species
richness assuming uniform and independent distributions on [0, 1] for δ and γ.
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ranges are determined exclusively by environmental tolerance, the slope of the cone (α) is irrelevant
for S(x).

species ranges are determined entirely by their environmental tolerance. In this situation, species

ranges will wrap entirely around the cone. This scenario gives species richness gradients that peak362

closer to the base of the mountain than to its apex (Fig. 5). The exact elevation of maximal diversity

depends on the distribution of γ, with smaller environmental tolerances yielding a maximum closer364

to the base of the mountain. When the distance constraint is relaxed as it is here, the slope of the

cone (α) has no effect on the results.366

Before moving on, we note that all of the results above are for isolated cones, in the sense that

we assume the base of the cone forms a boundary between hospitable and inhospitable habitat. For368

an oceanic mountain, this may be a reasonable assumption. For a terrestrial mountain, however,

one would expect that the habitat near the base of the mountain would be accessible by species370

living on the surrounding landscape. Such an argument suggests that elevational diversity gradients

on terrestrial mountains should have greater species richness near the mountain’s base than Figure372

5 suggests. In this scenario, the degree to which encroachment from species with range origins

on the surrounding landscape alters the shape of S(x) depends entirely on how species ranges374

on the surrounding landscape compare to species ranges on the mountain. If we assume that

(a) the distance constraint is not relevant at the scale of a mountain, (b) the environment is376

the same everywhere on the surrounding landscape, and (c) the surrounding landscape extends

indefinitely, then the species richness on the surrounding landscape will be infinite! Clearly such378
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logic is unsatisfactory. Therefore, for the time being, we only observe that encroachment from

species on any surrounding landscape should increase species richness at low elevations relative to380

what Fig. 5 suggests.

6 Results for the surface of the sphere382

We now turn to the surface of the sphere, a first model for species diversity gradients on Earth.

We will see that, in the neighborhood of the Equator, results on the sphere echo results from the384

line segment with the reflected environment, whereas in the neighborhood of the pole, results on

the sphere echo results near the peak of the cone.386

Recall that our coordinate system is x ∈ [−π/2, π/2] for latitude (with x = −π/2 corresponding

to the South Pole, x = 0 corresponding to the Equator, and x = π/2 corresponding to the North388

Pole). For longitude, we use φ ∈ (−π, π]. The great-circle distance between any two points on the

unit sphere is given by the geodetic form of the spherical law of cosines:390

d((x1, φ1), (x2, φ2)) = cos−1 (sinx1 sinx2 + cosx1 cosx2 cos (φ1 − φ2)) (7)

As a special case of eq. 7, note that if two points share the same longitude, then d((x, φ), (y, φ)) =

|x− y|.392

Again, let S(x) be the total species richness at latitude x ∈ [0, π/2] (all results will be invariant

with respect to longitude). Let S0(x) be the species richness resulting from ranges originating on394

the same side of the Equator as x, and let S1(x) be the species richness resulting from ranges

originating on the opposite side of the Equator as x. We are most interested in the environment396

g(x) = 1 − cosx, because this is a reasonable model for how solar inputs vary across the surface

of the Earth. For comparison with earlier results, we will also consider the linear environment398

g(x) = |2x/π|. The surface of the sphere with either environment does not communicate because of

the reflection at the Equator. Further, because this is a two-dimensional geometry, the difference400

between our definitions of species centers is again relevant, and we again adopt definition (D1) for

mathematical convenience. Finally, a uniform distribution of range origins on the sphere is given402

by f(x, φ) = (1/4π)−1 cosx.

We can derive S0(x, 0; γ, δ) using a logic similar to that used for the cone / disc. Our solution404

will take the form

S0(x, 0; γ, δ) =

∫ U(x)

L(x)

∫ φy

−φy
f(y, ϕ)dϕdy.
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L(x) and U(x) are identical to the cone / disc, or to the line, that is,406

L(x) = (x− δ) ∨ g−1 ((g(x)− γ) ∨ 0)

and

U(x) = (x+ δ) ∧ g−1((g(x) + γ) ∧ 1).

Given a latitude y ∈ [L(x), U(x)], φy ∈ (0, π] is the maximal longitude for which a range originating408

at (y, φy) will overlap (x, 0). To find φy we apply the distance formula in eq. 7:

d((x, 0), (y, φy)) = δ

⇒ φy = cos−1

[
−1 ∨ cos δ − sinx sin y

cosx cos y

]
(8)

where the quantity in square brackets evaluates to −1 (and thus φy = π) if the entire parallel at y410

is within a distance δ of (x, 0). Plugging in gives

S0(x, 0; γ, δ) =

∫ U(x)

L(x)

∫ φy

−φy
f(y, ϕ) dϕ dy

=

∫ U(x)

L(x)

∫ φy

−φy
cos y (4π)−1 dϕ dy

=

∫ U(x)

L(x)
(2π)−1 cos y φy dy

=

∫ U(x)

L(x)
(2π)−1 cos y cos−1

[
−1 ∨ cos δ − sinx sin y

cosx cos y

]
dy. (9)

S1(x; γ, δ) follows similarly, again using a logic similar to eq. 4. First, we only have S1(x; γ, δ) > 0412

if −g−1(γ) ∨ (x − δ) ≤ −g−1(0 ∨ (g(x) − γ)) (otherwise S1(x; γ, δ) = 0). As with the line, write

U1(x) = −g−1(γ) ∨ (x− δ), and write L1(x) = −g−1(0 ∨ (g(x)− γ)). Then, if U1(x) < L1(x)414

S1(x; γ, δ) =

∫ −L1(x)

−U1(x)

∫ φy

−φy
f(y, ϕ) dϕ dy

=

∫ −L1(x)

−U1(x)
(2π)−1 cos y cos−1

[
−1 ∨ cos δ − sinx sin y

cosx cos y

]
dy. (10)

Figure 6 shows S(x; γ, δ) for several choices of γ and δ, and shows S(x) when γ and δ are

independent and uniformly distributed on [0, 1] and [0, π/2], respectively. The most important416

panel of Fig. 6 is panel (h), which shows the expected species richness for a cosine environment

and with γ and δ independently and uniformly distributed on their allowable ranges. This plot418

shows a broad region of flat species richness near the equator, followed by a steep drop-off in species

richness at high latitudes.420
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Figure 6: Species richness gradients on a latitudinal transect on the surface of a sphere, for various
combinations of γ and δ. Top row: linear environment (g(x) = |2π/x|). Bottom row: cosine
environment (g(x) = 1− cosx). Left three columns: γ and δ fixed at specific values. Right column:
γ and δ are independent and uniformly distributed on [0, 1] and [0, π/2], respectively. Dotted lines
show S0(x), the species richness resulting from ranges with origins on the same side of the Equator
as x.

Figure 7 shows S(x) for various distributions of γ and δ. For both parameters, we use Beta

distributions with the first shape parameter (commonly written as α) set equal to 1, and allow the422

second shape parameter (commonly β) to be ≥ 1. (In the case of δ, we set δ = δmaxB, where B is a

Beta-distributed random variate, and δmax = π/2 is the maximum value of δ that we allow.) When424

β = 1, this gives uniform distributions. When β > 1, the distribution becomes more aggregated at

small values, with the density having a mode at 0 and declining monotonically as the parameter426

increases. The mean value of the Beta distribution is 1/(1 + β). The left-most column of figure

7 holds δ fixed at π, so that species ranges are determined exclusively by their environmental428

tolerance. The right-most three columns of Figure 7 show independent distributions for both γ and

δ.430

Figure 7 shows the model is capable of producing a rich variety of latitudinal gradients in

species diversity, depending on the assumptions made about the distributions of γ and δ. Despite432

this variety, many combinations of γ and δ predict that species richness will be reasonably constant

at low latitudes, and in many cases species diversity will actually increase subtly as one moves434

away from the Equator. To the best of our knowledge, this model is the first geometric model to
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Figure 7: Species richness gradients on a latitudinal transect on the surface of a sphere, for various
distributions for γ and δ. Left column shows δ = π for all species, which effectively removes the
distance constraint so that only the environmental tolerance dictates species ranges. For all other
columns, the distribution on δ becomes more concentrated on smaller values going from left to right.
Rows show different distributions for γ, where the distribution on γ becomes more concentrated on
smaller values going from top to bottom. Dotted lines show S0(x), the species richness resulting
from ranges with origins on the same side of the Equator as x.
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make this prediction. The region of relatively constant species richness at low latitudes is followed436

by a sharp drop in species diversity at intermediate latitudes. This region of rapidly declining

species diversity is found at (relatively) lower latitudes when species can only tolerate a narrow438

range of environments, and occurs at higher latitudes when species can tolerate a broader range

of environments. Under some scenarios (especially when the distance limitation is small), there is440

a zone at high latitudes where the loss in species diversity slows, before dropping precipitously as

one approaches the pole. This second shoulder in the species distribution curve at high latitudes442

is also a feature that, to the best of our knowledge, our model is the first to predict.

7 Ice caps444

Finally, we consider the impact of an ice cap (or zone that does not allow life) on the peak of a

cone or at the poles of a sphere. Incorporating an ice cap is straightforward. On a cone, we simply446

have to adjust U(x) in eq. 2 to:

U(x) =
[
(x+ δ) ∧ g−1 ((g(x) + γ) ∧ 1)

]
∧ x̃ (11)

We define S(x) = 0 when x > x̃. For the sphere, ice caps enter in at the poles, and so we adjust448

U(x) as in eq. 11, and we adjust −U1(x) to be

U1(x) =
[
−g−1(γ) ∨ (x− δ)

]
∨ −x̃.

Figure 8 shows that ice caps compress S(x), but otherwise have little effect on the shape of S(x)450

vs. x. Importantly, the presence of ice caps does not alter the major qualitative features of S(x)

that we have noted here, including the low-elevation peak of species richness on conical mountains,452

the flat or gradually increasing species diversity at low latitudes on the sphere, and (under some

conditions) the presence of a high-latitude shoulder in species diversity on the sphere.454

8 Summary and Discussion

The model presented here shows that the interplay among the geometry of the environment, niche456

fidelity and dispersal limitation can yield a surprisingly rich variety of latitudinal and elevational

gradients in biological diversity. This “environmental geometry” model predicts qualitative struc-458

ture to diversity gradients that is more nuanced than previous geometric models have suggested

(e.g. Colwell & Hurtt, 1994; Lees et al., 1999; Gorelick, 2008). Understanding the mechanisms460

behind these structures sharpens our understanding of how environmental geometry may influence
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Figure 8: Diversity gradients on cones and spheres with icecaps. Throughout, the position of
the icecap is shown with a dotted vertical line. Top row: Elevational diversity gradients on a
cone (actually a disc) when species ranges are determined only by their environmental tolerance.
Left two panels: γ is distributed uniformly on [0, 1]; right two panels: γ is concentrated at small
environmental tolerances. Bottom row: Latitudinal diversity gradients on the sphere for various
distributions of γ and δ. In panels E–H, ice caps extend to x = 3π/8, or 67.5◦ latitude, which
loosely coincides with the position of the Arctic and Antarctic circles on Earth.
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diversity gradients, and how these effects are modulated by the ecological properties of the taxa462

considered. These insights improve our ability to resolve the impacts of the many drivers that

combine to generate the diversity gradients that typify life (Colwell, 2011).464

On a sphere, this model predicts latitudinal diversity gradients (LDGs) with more complex

structure than the quasi-parabolic relationship between latitude and species richness predicted466

by most other geometric models (e.g., Colwell & Hurtt, 1994; Lees et al., 1999; Gorelick, 2008)).

Prominent features of this structure include broad plateaus in diversity at low latitudes, especially468

when species ranges are large; subtle Equatorial valleys in species richness when dispersal limitation

is weak and environmental niches are narrow; rapid declines in biological diversity at the low-to-470

mid latitude “shoulders” of the low-latitude plateau; and occasional secondary plateaus in species

richness at mid-to-high latitudes, especially when environmental niches are narrow and dispersal472

limitation is strong. Although a formal confrontation with data awaits future work, the concordance

between several of these predictions and documented LDGs is striking. In the most recent edition474

of their text, Lomolino et al. (2010, p. 670) observed that “rather than exhibiting a continuous

decline in species density from the Equator to the poles, most taxa exhibit a pattern of relatively476

high, albeit variable, diversity in the tropics marked by a rapid decline through the subtropics and

much more modest declines through the higher latitudes.” This statement matches the qualitative478

predictions of our model nearly to a tee, and suggests limits to environmental niches and range

sizes on the stronger side of those that we have explored here (Fig. 7).480

Some of the more surprising predictions of this model for LDGs are occasional Equatorial

diversity valleys and high-latitude diversity plateaus (or even secondary peaks; Fig. 6). Equatorial482

valleys in species diversity are well documented for oceanic taxa. For example, Tittensor et al.

(2010) observed that most oceanic taxa peak in richness between 20◦–40◦ latitude, while Rutherford484

et al. (1999) and Yasuhara et al. (2012) have shown that planktic foraminiferan diversity gradually

increases from the Equator to the subtropics before declining sharply beyond ∼ 30◦ . The match486

with oceanic data is compelling, as the simplified setting used in this model would seem to more

closely resemble oceanic conditions than terrestrial ones, where a variety of other important factors488

such as continental boundaries and precipitation gradients surely participate in LDGs. Empirical

evidence for a secondary polar plateau in species richness is harder to find. Roy et al. (1998) found490

a secondary peak in marine copepod diversity between 50◦ – 60◦ N in the eastern Pacific, although

they speculated that this was “at least partly an artifact” of the particular geography of the Gulf492

of Alaska and the Bering Sea. Because the high-latitude plateau is driven by species ranges that
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partially encircle a pole, the plateau would be more likely to occur in the Southern ocean, if it494

occurs at all.

On a cone, our model predicts a unimodal, “hump-shaped” relationship between species richness496

and elevation, with a peak in richness closer to the base of the cone than its apex. While many

have observed that a hump-shaped relationship between species richness and elevation is common498

(e.g. Rahbek, 1995; Lomolino, 2001), few have commented on the precise location of the diversity

peak. Our informal survey of the literature suggests that low-elevation peaks in species richness500

are common, and can be found for such taxa as birds (Terborgh, 1977), rodents (Rahbek, 1995),

ants (Bishop et al., 2014), ferns (Bhattarai et al., 2004), and fungi (Miyamoto et al., 2014). If this502

pattern withstands deeper scrutiny, our model provides one mechanism that could explain it.

To sum up, while environmental geometry is unlikely to be the sole driver of diversity gradients,504

the results here suggest that the even simple geometries can generate surprisingly nuanced gradients

in species richness when combined with basic ecological limits on species ranges. Although our506

casual comparison of model predictions with data is far from rigorous, the striking concordance

between model predictions and prevailing empirical patterns suggests that the role of geometry may508

be deeper and more pervasive than previously appreciated. The success of this model in capturing

the basic features of many LDGs and EDGs also suggests that it could be profitably adapted to510

less conventional diversity gradients along more complex geometries. Other interesting settings to

explore may include the microbiome of the human skin (Costello et al., 2012) or gastointestinal512

tract (Stearns et al., 2011), bathymetric (depth) gradients in the ocean (Pineda & Caswell, 1998),

or even the hypothetical species richness gradients on candidate planets for extraterrestrial life514

(Snyder-Beattie, 2013).
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