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Abstract

This paper is an addendum to the ‘Unilateralist’s Curse’ paper of Nick
Bostrom, Thomas Douglas and Anders Sandberg [BDS12]. It demon-
strates that if there are identical agents facing a situation where any one
of them can implement a policy unilaterally, then the best strategies they
can implement are also Nash equilibriums. It also notes that if this Nash
equilibrium involves probabilistic reactions to observations, then it is a
weak Nash equilibrium and a single agent is free to change all their non-
trivial probabilistic decisions, without changing the expected utility of the
outcome.

The Unilateralist’s Curse paper analyses how to make decisions when there
is a certain policy under consideration, and many different agents who could
each unilaterally implement that policy. If each agent simply followed their
own estimate’s of the value of that policy, we would be in a situation similar to
the winner’s curse in auctions: the policy would get implemented if the most
optimistic agent thought it was a good idea. Thus in these situations, agents
must take care to construct a decision process that counteracts this effect and
makes the agents less likely to go ahead on personal, marginally optimistic,
information. The problem is isomorphic, in reverse, to policies that require
unanimity: there the policy’s implementation is dictated by the opinion of the
most pessimistic agent.

This paper looks at a specific simplified version of this problem. It as-
sumes that all the agents have identical preferences (they judge each outcome
as equally good or equally bad), that they are equally likely to see any given
piece of evidence about the value of the policy, and that they can’t communi-
cate. They will attempt to construct the best (probabilistic) strategy they can,
given these constraints. Because they are identical, they will all construct the
same probabilistic strategy. This paper demonstrates that if this is indeed the
best strategy (or even a local maxima), then it is a Nash equilibrium: it cannot
be improved by unilateral changes by a single agent.

If the strategy is probabilistic (given certain observations, the agent is neither
entirely certain to implement the policy, nor entirely certain to refrain), then it
is a weak Nash equilibrium – a single agent can change their strategy without
making the situation worse. Indeed, a single agent can change all the non-trivial
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probabilities in their strategy (those neither zero nor one), without changing the
expected utility at all.

Before proving those results, we will first set up the problem in the more
general situation.

1 Identical preferences, no communication

Let there be n agents, and let O be the (finite) set of possible observations
that each agent could make. Each agent will react to the observations in one
of two ways: by doing nothing, or by going ahead and implementing the policy
unilaterally. They may also choose to implement the policy with a certain
probability.

Hence a probabilistic strategy for agent i is a function fi : O → [0, 1],
a function from the set of possible observations to a probability value. Then
fi(o) = p means that if agent i observes o, she will go do nothing with probability
p. The set of probabilistic strategies for each agent is a vector (f1, f2, . . . fn).

Let W be set of possible states of the world before the agents make their de-
cisions. For w ∈W, each agent has a utility u0(w) (representing their evaluation
of no agent going ahead in state w) and u1(w) (representing their evaluation of
at least on agent going ahead in state w) – by assumption, these utilities are
the same for every agent.

The agents will all make their observations. The set of all possible obser-
vations is simply a list of n observations, a vector with n elements, each in O
(mathematically, this vector is an element of On).

If the agents implement the probabilistic strategies f = (f1, f2, . . . , fn) and
see the observations O = (o1, o2, . . . , on), then let Not(f,O) be the probability
that no agents do anything: the policy isn’t implemented. This is simply the
product of all the fi(oi) terms, which represent the probability that agent i
won’t do anything. Thus their expected utility in world w will be:

EU(f, w,O) = u0(w)Not(f,O) + u1(w) (1−Not(f,O))

In each world-state w, there is a certain prior probability for each observation
set O, P (O|w). Thus in world-state w, given strategies f , the agents would have
an expected utility of

EU(f, w) =
∑

O∈On

P (O|w)EU(f, w,O).

Finally, each world-state w has an initial prior probability P (w), ensuring that
the expected utility of the strategies f is

EU(f) =
∑
w∈W

P (w)EU(f, w).

In gory detail, this sum is

∑
w∈W

P (w)

 ∑
O∈On

P (O|w)

(
u0(w)Not(f,O) + u1(w) (1−Not(f,O))

) . (1)
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It is important to note that though EU(f) is not linear in the components
of f (because of the product term Not(f,O)), it is linear in the components of
any single fi (since the Not(f,O) is a product of the fi(oi)’s for all distinct i’s).

Each fi is a vector of probabilities, which are elements of [0, 1]. Thus we
can differentiate fi and hence EU(f) in terms of changes in these elements.
Even if fi(oi) is zero or one (which means that we cannot meaningfully have
lower/higher probabilities), we can still differentiate EU(f) as a formal function
in terms of changes in the components of fi – equation (1) doesn’t ‘know’ that
the elements of f are supposed to be in [0, 1].

What is a change in fi? Well, if gi is another possible strategy for agent
i, then the change in strategy is simply the subtraction δ = fi − gi, i.e. for
any observation o, δ(o) = fi(o) − gi(o). A change in overall strategy f is a
vector of such changes in individual fi’s. We’ll write δi as the change vector
(0, . . . , 0, δ, 0, . . . , 0), with δi being δ in the ith slot and zero everywhere else.
Hence δi corresponds to changing the strategy fi (by adding δ) and leaving the
other strategies unchanged.

Because EU(f) is linear in the fi’s, differentiating in the δi direction gives
us the exact changes in EU , not just a limiting expression. In symbolic form,
writing D(EU) as the derivative of EU ,

EU(f + δi)) = EU(f) + (D(EU))f (δi). (2)

2 Indistinguishable agents, no communication

We will now consider that the agents are fully identical (in terms of the observa-
tions they expect to make, as well as their preferences) and that still don’t com-
municate. Then their combined strategy will be of the form < g >= (g, g, . . . , g)
for some g: they will all implement the same strategy.

Then we call g a local maximum symmetric strategy if EU(< g >) is a local
maximum in terms of g. Note that this does not mean that < g > is a local
maximum for EU in the space of all strategies, including the non-symmetric
ones. It is possible (indeed plausible) that if we could assign different roles to
different agents, we could reach higher expected utility.

Then we have the following encouraging result:

Theorem 2.1. If g is a local maximum symmetric strategy for EU , then < g >
is a Nash equilibrium for all agents.

Proof. The proof derives from this essential Lemma:

Lemma 2.2. If δ is a change in strategy, chosen so that g+ δ is also a strategy
(i.e. the probabilities in g + δ remain between 0 and 1), then for any i:

(D(EU))<g>(δi) = (D(EU))<g>(< δ/n >).

Proof of Lemma.
Since the agents are identical, for all i and j, we must have:

(D(EU))<g>(δi) = (D(EU))<g>(δj).
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Since the derivative is linear, we must have

(D(EU))<g>(< δ/n >) =

n∑
j=1

(D(EU))<g>(δj/n).

Replacing the j’s with a given i:

(D(EU))<g>(< δ/n >) = (D(EU))<g>(

n∑
j=1

δi/n)

= (D(EU))<g>(δi).

�
The assumption that g is a local maximum symmetric strategy for EU im-

plies that all infinitesimal symmetric transformations of g cannot increase ex-
pected utility. Thus if g + δ is a strategy,

(D(EU))<g>(< δ >) ≤ 0. (3)

Now consider what happens if the i-th agent replaces their strategy g with
another strategy g+ δ. Equation (2) implies that the change in expected utility
is

EU(< g > +δi)− EU(< g >) = (D(EU))<g>(δi).

By the previous lemma, this is

EU(< g > +δi)− EU(< g >) = (D(EU))<g>(< δ/n >).

The set of strategies is convex: so if g+ δ is a strategy, then so must be g+ δ/n.
Hence, since g is a local maximum symmetric strategy for EU , the above differ-
ence must be less than or equal to zero. Hence the agent i can’t increase expected
utility by unilaterally changing their personal strategy. Since all agents are iden-
tical and pursuing identical strategies, < g > must be a Nash equilibrium. �

Let us call o ∈ O a definite observation for g if g(o) is either 0 nor 1.
Thus definite observations are observations that entirely determine the agent’s
actions, without any randomness. Then the above proof leads to the following
interesting corollary:

Corollary 2.3. If g is a local maximum symmetric strategy for EU and if g has
a non-definite observation, then the Nash equilibrium at < g > is a non-strict
equilibrium (i.e. a single agent can change their strategy in a way that doesn’t
make themselves worse off).

In fact, a single agent can change the probabilities of all their non-definite
observations, without changing the expected utility.

Proof. Choose a δ such that g + δ and g − δ are both strategies. This implies
that δ(o) = 0 whenever o is an definite observation (or else one of (g + δ)(o)
or (g − δ)(o) be below 0 or above 1, and hence would not be a probability). It
can also be seen if o is a non-definite observation for g, then a δ with the above
properties and δ(o) 6= 0 can be found (if a probability is neither 0 nor 1, it can
be moved at least a little bit in both direction).
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Since g is a local maximum symmetric strategy for EU , equation (3) implies
both (D(EU))<g>(< δ >) ≤ 0 and (D(EU))<g>(< −δ >) ≤ 0. This is only
possible if (D(EU))<g>(< δ >) = 0. Hence

EU(< g > +(δ)i) = EU(< g >) + (D(EU))<g> < δ/n >

= EU(< g >) + (1/n)(D(EU))<g> < δ >

= EU(< g >).

Thus a single agent can change their strategy by δ without changing expected
utility: the Nash equilibrium is weak.

Conversely, assume agent i has changed her strategy to g + δ, such that
δ(o) = 0 on any o that is a definite observation of g’s. Then there exists a µ > 0
such that g + µδ and g − µδ are both strategies. Hence

(D(EU))<g> < µδ >= 0

which, since the derivative is linear, means that (D(EU))<g> < δ/n >= 0 and
hence that

EU(< g > +δi) = EU(< g >).

Consequently agent i changing their strategy to g+δ has left the expected utility
unchanged. A single agent can thus change the probability of implementation
for any non-definite observations. �
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