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Abstract
Studies of superintelligent-level systems have typically posited AI func-
tionality that plays the role of a mind in a rational utility-directed agent,
and hence employ an abstraction initially developed as an idealized
model of human decision makers. Today, developments in AI technology
highlight intelligent systems that are quite unlike minds, and provide
a basis for a different approach to understanding them: Today, we can
consider how AI systems are produced (through the work of research and
development), what they do (broadly, provide services by performing
tasks), and what they will enable (including incremental yet potentially
thorough automation of human tasks).

Because tasks subject to automation include the tasks that comprise
AI research and development, current trends in the field promise accel-
erating AI-enabled advances in AI technology itself, potentially lead-
ing to asymptotically recursive improvement of AI technologies in dis-
tributed systems, a prospect that contrasts sharply with the vision of
self-improvement internal to opaque, unitary agents.

The trajectory of AI development thus points to the emergence
of asymptotically comprehensive, superintelligent-level AI services that—
crucially—can include the service of developing new services, both
narrow and broad, guided by concrete human goals and informed by
strong models of human (dis)approval. The concept of comprehensive
AI services (CAIS) provides a model of flexible, general intelligence in
which agents are a class of service-providing products, rather than a
natural or necessary engine of progress in themselves.

Ramifications of the CAIS model reframe not only prospects for an
intelligence explosion and the nature of advanced machine intelligence,
but also the relationship between goals and intelligence, the problem
of harnessing advanced AI to broad, challenging problems, and funda-
mental considerations in AI safety and strategy. Perhaps surprisingly,
strongly self-modifying agents lose their instrumental value even as their
implementation becomes more accessible, while the likely context for
the emergence of such agents becomes a world already in possession of
general superintelligent-level capabilities. These prospective capabilities,
in turn, engender novel risks and opportunities of their own.

Further topics addressed in this work include the general architecture
of systems with broad capabilities, the intersection between symbolic and
neural systems, learning vs. competence in definitions of intelligence,
tactical vs. strategic tasks in the context of human control, and estimates
of the relative capacities of human brains vs. current digital systems.
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Preface

The writing of this document was prompted by the growing gap between
models that equate advanced AI with powerful agents and the emerging
reality of advanced AI as an expanding set of capabilities (here, “services”)
in which agency is optional. A service-centered perspective reframes both
prospects for superintelligent-level AI and a context for studies of AI safety
and strategy.

Taken as a whole, this work suggests that problems centered on what high-
level AI systems might choose to do are relatively tractable, while implicitly
highlighting questions of what humans might choose to do with their capabilities.
This shift, in turn, highlights the potentially pivotal role of high-level AI in
solving problems created by high-level AI technologies themselves.

The text was written and shared as a series of widely-read Google Docs
released between December 2016 and November 2018, largely in response to
discussions within the AI safety community. The organization of the present
document reflects this origin: The sections share a common conceptual frame-
work, yet address diverse, overlapping, and often loosely-coupled topics. The
table of contents, titles, subheads, summaries, and internal links are struc-
tured to facilitate skimming by readers with different interests. The table of
contents primarily of declarative sentences, and has been edited to read as an
overview.

Several apologies are in order: A number of topics and examples assume a
basic familiarity with deep-learning concepts and jargon, while much of the
content assumes familiarity with concerns regarding artificial general intelli-
gence circa 2016–18; some sections directly address concepts and concerns
discussed in Superintelligence (Bostrom 2014). In this work, I have made little
effort to assign proper scholarly credit to ideas: Concepts that seem natural,
obvious, or familiar are best treated as latent community knowledge and very
likely have uncited antecedents. Ideas that can reasonably be attributed to
someone else probably should be. Finally, how I frame and describe basic
concepts has shifted over time, and in the interests of early completion, I
have made only a modest effort to harmonize terminology across the original
documents. I thought it best to share the content without months of further
delay.
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I Introduction: From R&D automation to
comprehensive AI Services

Responsible development of AI technologies can provide an increasingly

comprehensive range of superintelligent-level AI services—including

the service of developing new services—and can thereby deliver the

value of general-purpose AI while avoiding the risks associated with

self-modifying AI agents.

I.1 Summary

The emerging trajectory of AI development reframes AI prospects. Ongo-
ing automation of AI R&D tasks, in conjunction with the expansion of AI
services, suggests a tractable, non-agent-centric model of recursive AI tech-
nology improvement that can implement general intelligence in the form of
comprehensive AI services (CAIS), a model that includes the service of devel-
oping new services. The CAIS model—which scales to superintelligent-level
capabilities—follows software engineering practice in abstracting functional-
ity from implementation while maintaining the familiar distinction between
application systems and development processes. Language translation exem-
plifies a service that could incorporate broad, superintelligent-level world
knowledge while avoiding classic AI-safety challenges both in development
and in application. Broad world knowledge could likewise support predictive
models of human concerns and (dis)approval, providing safe, potentially
superintelligent-level mechanisms applicable to problems of AI alignment.
Taken as a whole, the R&D-automation/CAIS model reframes prospects for
the development and application of superintelligence, placing prospective
AGI agents in the context of a broader range of intelligent systems while
attenuating their marginal instrumental value.

I.2 The trajectory of AI development reframes AI prospects

Past, present, and projected developments in AI technology can inform our
understanding of prospects for superintelligent-level capabilities, providing a
concrete anchor that complements abstract models of potential AI systems. A
development-oriented perspective highlights path-dependent considerations
in assessing potential risks, risk-mitigation measures, and safety-oriented
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research strategies. The current trajectory of AI development points to asymp-
totically recursive automation of AI R&D that can enable the emergence
of general, asymptotically comprehensive AI services (CAIS). In the R&D-
automation/CAIS model, recursive improvement and general AI capabilities
need not be embodied in systems that act as AGI agents.

Figure 1: Classes of intelligent systems

I.3 R&D automation suggests a technology-centered model of
recursive improvement

Technology improvement proceeds through research and development, a trans-
parent process that exposes component tasks to inspection, refactoring, and
incremental automation.1 If we take advanced AI seriously, then accelerating,
asymptotically-complete R&D automation is a natural consequence:

• By hypothesis, advances in AI will enable incremental automation and
speedup of all human tasks.

• As-yet unautomated AI R&D tasks are human tasks, hence subject to
incremental automation and speedup.

• Therefore, advances in AI will enable incremental automation and
speedup of all AI R&D tasks.

1. Note that component-level opacity is compatible with effective system-level transparency.
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Today we see automation and acceleration of an increasing range of AI R&D
tasks, enabled by the application of both conventional software tools and tech-
nologies in the AI spectrum. Past and recent developments in the automation
of deep-learning R&D tasks include:

• Diverse mechanisms embodied in NN toolkits and infrastructures
• Black-box and gradient-free optimization for NN hyperparameter search

(Jaderberg et al. 2017)
• RL search and discovery of superior NN gradient-descent algorithms

(Bello et al. 2017)
• RL search and discovery of superior NN cells and architectures (Zoph

et al. 2017)

Today, automation of search and discovery (a field that overlaps with “meta-
learning”) requires human definition of search spaces, and we can expect
that the definition of new search spaces—as well as fundamental innovations
in architectures, optimization methods, and the definition and construction
of tasks—will remain dependent on human insight for some time to come.
Nonetheless, increasing automation of even relatively narrow search and dis-
covery could greatly accelerate the implementation and testing of advances
based on human insights, as well as their subsequent integration with other
components of the AI technology base. Exploring roles for new components
(including algorithms, loss functions, and training methods) can be routine,
yet important: as Geoff Hinton has remarked, “A bunch of slightly new ideas
that play well together can have a big impact”.

Focusing exclusively on relatively distant prospects for full automation
would distract attention from the potential impact of incremental research
automation in accelerating automation itself.

I.4 R&D automation suggests a service-centered model of general
intelligence

AI deployment today is dominated by AI services such as language translation,
image recognition, speech recognition, internet search, and a host of services
buried within other services. Indeed, corporations that provide cloud comput-
ing now actively promote the concept of “AI as a service” to other corporations.
Even applications of AI within autonomous systems (e.g., self-driving vehicles)
can be regarded as providing services (planning, perception, guidance) to
other system components.

R&D automation can itself be conceptualized as a set of services that
directly or indirectly enable the implementation of new AI services. Viewing
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service development through the lens of R&D automation, tasks for advanced
AI include:

• Modeling human concerns
• Interpreting human requests
• Suggesting implementations
• Requesting clarifications
• Developing and testing systems
• Monitoring deployed systems
• Assessing feedback from users
• Upgrading and testing systems

CAIS functionality, which includes the service of developing stable, task-
oriented AI agents, subsumes the instrumental functionality of proposed
self-transforming AGI agents, and can present that functionality in a form
that better fits the established conceptual frameworks of business innovation
and software engineering.

I.5 The services model abstracts functionality from
implementation

Describing AI systems in terms of functional behaviors (“services”) aligns with
concepts that have proved critical in software systems development. These
include separation of concerns, functional abstraction, data abstraction, encap-
sulation, and modularity, including the use of client/server architectures—a
set of mechanisms and design patterns that support effective program design,
analysis, composition, reuse, and overall robustness.

Abstraction of functionality from implementation can be seen as a figure-
ground reversal in systems analysis. Rather than considering a complex
system and asking how it will behave, one considers a behavior and asks how
it can be implemented. Desired behaviors can be described as services, and
experience shows that complex services can be provided by combinations
of more specialized service providers, some of which provide the service of
aggregating and coordinating other service providers.

I.6 The R&D automation model distinguishes development from
functionality

The AI-services model maintains the distinction between AI development and
AI functionality. In the development-automation model of advanced AI ser-
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vices, stable systems build stable systems, avoiding both the difficulties and po-
tential dangers of building systems subject to open-ended self-transformation
and potential instability.

Separating development from application has evident advantages. For one,
task-focused applications need not themselves incorporate an AI-development
apparatus—there is little reason to think that a system that provides online
language translation or aerospace engineering design services should in addi-
tion be burdened with the tasks of an AI developer. Conversely, large resources
of information, computation, and time can be dedicated to AI development,
far beyond those required to perform a typical service. Likewise, in ongoing
service application and upgrade, aggregating information from multiple de-
ployed systems can provide decisive advantages to centralized development
(for example, by enabling development systems for self-driving cars to learn
from millions of miles of car-experience per day). Perhaps most important,
stable products developed for specific purposes by a dedicated development
process lend themselves to extensive pre-deployment testing and validation.

I.7 Language translation exemplifies a safe, potentially
superintelligent service

Language translation provides an example of a service best provided by
superintelligent-level systems with broad world knowledge. Translation
of written language maps input text to output text, a bounded, episodic,
sequence-to-sequence task. Training on indefinitely large and broad text
corpora could improve translation quality, as could deep knowledge of psy-
chology, philosophy, history, geophysics, chemistry, and engineering. Effective
optimization of a translation system for an objective that weights both qual-
ity and efficiency would focus computation solely on the application of this
knowledge to translation.

The process of developing language translation systems is itself a service
that can be formulated as an episodic task, and as with translation itself,
effective optimization of translation-development systems for both quality
and efficiency would focus computation solely on that task.

There is little to be gained by modeling stable, episodic service-providers
as rational agents that optimize a utility function over future states of the
world, hence a range of concerns involving utility maximization (to say noth-
ing of self-transformation) can be avoided across a range of tasks. Even
superintelligent-level world knowledge and modeling capacity need not in
itself lead to strategic behavior.
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I.8 Predictive models of human (dis)approval can aid AI goal
alignment

As noted by Stuart Russell, written (and other) corpora provide a rich source
of information about human opinions regarding actions and their effects;
intelligent systems could apply this information in developing predictive
models of human approval, disapproval, and disagreement. Potential training
resources for models of human approval include existing corpora of text
and video, which reflect millions of person-years of both real and imagined
actions, events, and human responses; these corpora include news, history,
fiction, science fiction, advice columns, law, philosophy, and more, and could
be augmented and updated with the results of crowd-sourced challenges
structured to probe model boundaries.

Predictive models of human evaluations could provide strong priors and
common-sense constraints to guide both the implementation and actions of AI
services, including strategic advisory services to powerful actors. Predictive
models are not themselves rational agents, yet models of this kind could
contribute to the solution of agent-centered safety concerns. In this connection,
separation of development from application can insulate such models from
perverse feedback loops involving self-modification.

I.9 The R&D-automation/CAIS model reframes prospects for
superintelligence

From a broad perspective, the R&D-automation/CAIS model:

• Distinguishes recursive technology improvement from self-improving
agents

• Shows how incremental automation of AI R&D can yield recursive
improvement

• Presents a model of general intelligence centered on services rather than
systems

• Suggests that AGI agents are not necessary to achieve instrumental goals
• Suggests that high-level AI services would precede potential AGI agents
• Suggests potential applications of high-level AI services to general AI

safety

For the near term, the R&D-automation/CAIS model:

• Highlights opportunities for safety-oriented differential technology de-
velopment
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• Highlights AI R&D automation as a leading indicator of technology
acceleration

• Suggests rebalancing AI research portfolios toward AI-enabled R&D
automation

Today, we see strong trends toward greater AI R&D automation and broader
AI services. We can expect these trends to continue, potentially bridging the
gap between current and superintelligent-level AI capabilities. Realistic, path-
dependent scenarios for the emergence of superintelligent-level AI capabilities
should treat these trends both as an anchor for projections and as a prospective
context for trend-breaking developments.
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II Overview: Questions, propositions, and topics

II.1 Summary

This document outlines topics, questions, and propositions that address:

1. Prospects for an intelligence explosion
2. The nature of advanced machine intelligence
3. The relationship between goals and intelligence
4. The problem of using and controlling advanced AI
5. Near- and long-term considerations in AI safety and strategy

The questions and propositions below reference sections of this document that
explore key topics in more depth. From the perspective of AI safety concerns,
this document offers support for several currently-controversial propositions
regarding artificial general intelligence:

• That AGI agents have no natural role in developing general AI capabili-
ties.

• That AGI agents would offer no unique and substantial value in provid-
ing general AI services.

• That AI-based security services could safely constrain subsequent AGI
agents, even if these operate at a superintelligent level.

II.2 Reframing prospects for an intelligence explosion

II.2.1 Does recursive improvement imply self-transforming agents?

Ongoing automation of tasks in AI R&D suggests a model of asymptotically-
recursive technology improvement that scales to superintelligent-level (SI-
level) systems. In the R&D-automation model, recursive improvement is
systemic, not internal to distinct systems or agents. The model is fully generic:
It requires neither assumptions regarding the content of AI technologies, nor
assumptions regarding the pace or sequence of automation of specific R&D
tasks. Classic self-transforming AGI agents would be strictly more difficult to
implement, hence are not on the short path to an intelligence explosion.

• Section 1: R&D automation provides the most direct path to
an intelligence explosion
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• Section 10: R&D automation dissociates recursive improvement from AI
agency

• Section 11: Potential AGI-enabling technologies also enable comprehensive
AI services

II.2.2 Would self-transforming agents provide uniquely valuable
functionality?

Suites of AI services that support SI-level AI development—working in consul-
tation with clients and users—could provide a comprehensive range of novel
AI services; these would presumably include services provided by adaptive,
upgradable, task-oriented agents. It is difficult to see how the introduction
of potentially unstable agents that undergo autonomous open-ended self-
transformation would provide additional value.

• Section 3: To understand AI prospects, focus on services, not implementations
• Section 12: AGI agents offer no compelling value

II.2.3 Can fast recursive improvement be controlled and managed?

Recursive improvement of basic AI technologies would apply allocated machine
resources to the development of increasingly functional building blocks for
AI applications (better algorithms, architectures, training methods, etc.); basic
technology development of this sort could be open-ended, recursive, and fast,
yet non-problematic. Deployed AI applications call for careful management, but
applications stand outside the inner loop of basic-technology improvement.

• Section 23: AI development systems can support effective human guidance
• Section 24: Human oversight need not impede fast, recursive

AI technology improvement

II.2.4 Would general learning algorithms produce systems with general
competence?

The application of an idealized, fully general learning algorithm would enable
but not entail the learning of any particular competence. Time, informa-
tion, and resource constraints are incompatible with universal competence,
regardless of ab initio learning capacity.

• Section 2: Standard definitions of “superintelligence” conflate
learning with competence

• Section 21: Broad world knowledge can support safe task performance
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• Section 39: Tiling task-space with AI services can provide general AI capabil-
ities

II.3 Reframing the nature of advanced machine intelligence

II.3.1 Is human learning an appropriate model for AI development?

Action, experience, and learning are typically decoupled in AI development:
Action and experience are aggregated, not tied to distinct individuals, and
the machine analogues of cognitive change can be profound during system
development, yet absent in applications. As we see in AI technology today,
learning algorithms can be applied to produce and upgrade systems that do
not themselves embody those algorithms. Accordingly, using human learning
and action as a model for AI development and application can be profoundly
misleading.

• Section 2: Standard definitions of “superintelligence” conflate
learning with competence

• Section 7: Training agents in human-like environments can provide
useful, bounded services

• Section 16: Aggregated experience and centralized learning
support AI-agent applications

II.3.2 Does stronger optimization imply greater capability?

Because optimization for a task focuses capabilities on that task, strong opti-
mization of a system acts as a strong constraint; in general, optimization does
not extend the scope of a task or increase the resources employed to perform it.
System optimization typically tends to reduce resource consumption, increase
throughput, and improve the quality of results.

• Section 8: Strong optimization can strongly constrain AI capabilities, behav-
ior, and effects

II.3.3 Do broad knowledge and deep world models imply broad AI
capabilities?

Language translation systems show that safe, stable, high-quality task perfor-
mance can be compatible with (and even require) broad and deep knowledge
about the world. The underlying principle generalizes to a wide range of
tasks.

• Section 21: Broad world knowledge can support safe task performance
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II.3.4 Must we model SI-level systems as rational, utility-maximizing
agents?

The concept of rational, utility-maximizing agents was developed as an ide-
alized model of human decision makers, and hence is inherently (though
abstractly) anthropomorphic. Utility-maximizing agents may be intelligent
systems, but intelligent systems (and in particular, systems of agents) need not
be utility-maximizing agents.

• Section 5: Rational-agent models place intelligence in an
implicitly anthropomorphic frame

• Section 6: A system of AI services is not equivalent to a utility maximizing
agent

• Section 17: End-to-end reinforcement learning is compatible
with the AI-services model

• Section 18: Reinforcement learning systems are not equivalent
to reward-seeking agents

II.3.5 Must we model SI-level systems as unitary and opaque?

Externally-determined features of AI components (including their develop-
ment histories, computational resources, communication channels, and degree
of mutability) can enable structured design and functional transparency, even
if the components themselves employ opaque algorithms and representations.

• Section 9: Opaque algorithms are compatible with
functional transparency and control

• Section 15: Development-oriented models align with deeply-structured AI
systems

• Section 38: Broadly-capable systems coordinate narrower systems

II.4 Reframing the relationship between goals and intelligence

II.4.1 What does the orthogonality thesis imply for the generality of
convergent instrumental goals?

Intelligent systems optimized to perform perform bounded tasks (in particular,
episodic tasks with a bounded time horizon) need not be agents with open-
ended goals that call for self preservation, cognitive enhancement, resource
acquisition, and so on; by Bostrom’s orthogonality thesis, this holds true
regardless of the level of intelligence applied to those tasks.
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• Section 19: The orthogonality thesis undercuts the generality
of instrumental convergence

II.4.2 How broad is the basin of attraction for convergent instrumental
goals?

Instrumental goals are closely linked to final goals of indefinite scope that con-
cern the indefinite future. Societies, organizations, and (in some applications)
high-level AI agents may be drawn toward convergent instrumental goals, but
high-level intelligence per se does not place AI systems within this basin of
attraction, even if applied to broad problems that are themselves long-term.

• Section 21: Broad world knowledge can support safe task performance
• Section 25: Optimized advice need not be optimized to induce its acceptance

II.5 Reframing the problem of using and controlling advanced AI

II.5.1 Would the ability to implement potentially-risky
self-transforming agents strongly motivate their development?

If future AI technologies could implement potentially-risky, self-transforming
AGI agents, then similar, more accessible technologies could more easily be
applied to implement open, comprehensive AI services. Because the ser-
vice of providing new services subsumes the proposed instrumental value
of self-transforming agents, the incentives to implement potentially-risky
self-transforming agents appear to be remarkably small.

• Section 11: Potential AGI-enabling technologies also enable comprehensive
AI services

• Section 12: AGI agents offer no compelling value
• Section 33: Competitive AI capabilities will not be boxed

II.5.2 How can human learning during AI development contribute to
current studies of AI safety strategies?

We can safely predict that AI researchers will continue to identify and study
surprising AI behaviors, and will seek to exploit, mitigate, or avoid them
in developing AI applications. This and other predictable aspects of future
knowledge can inform current studies of strategies for safe AI development.

• Section 35: Predictable aspects of future knowledge can inform AI safety
strategies
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II.5.3 Can we avoid strong trade-offs between development speed and
human oversight?

Basic research, which sets the overall pace of technological progress, could be
safe and effective with relatively little human guidance; application develop-
ment, by contrast, requires strong human guidance, but as an inherent part of
the development task—to deliver desirable functionality—rather than as an
impediment. Support for human guidance can be seen as an AI service, and
can draw on predictive models of human approval and concerns.

• Section 22: Machine learning can develop predictive models of human ap-
proval

• Section 23: AI development systems can support effective human guidance
• Section 24: Human oversight need not impede fast, recursive

AI technology improvement

II.5.4 Can we architect safe, superintelligent-level design and planning
services?

Consideration of concrete task structures and corresponding services suggests
that SI-level AI systems can safely converse with humans, perform creative
search, and propose designs for systems to be implemented and deployed in
the world. Systems that provide design and planning services can be opti-
mized to provide advice without optimizing to manipulate human acceptance
of that advice.

• Section 26: Superintelligent-level systems can safely provide
design and planning services

• Section 28: Automating biomedical R&D does not require defining human
welfare

II.5.5 Will competitive pressures force decision-makers to transfer
strategic decisions to AI systems?

In both markets and battlefields, advantages in reaction time and decision
quality can motivate transfer of tactical control to AI systems, despite potential
risks; for strategic decisions, however, the stakes are higher, speed is less
important, advice can be evaluated by human beings, and the incentives to
yield control are correspondingly weak.

• Section 27: Competitive pressures provide little incentive to transfer strategic
decisions to AI systems
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II.5.6 What does the R&D-automation/AI-services model imply for
studies of conventional vs. extreme AI-risk concerns?

Increasing automation of AI R&D suggests that AI capabilities may advance
surprisingly rapidly, a prospect that increases the urgency of addressing
conventional AI risks such as unpredictable failures, adversarial manipulation,
criminal use, destabilizing military applications, and economic disruption.
Prospects for the relatively rapid emergence of systems with broad portfolios
of capabilities, including potentially autonomous planning and action, lend
increased credence to extreme AI-risk scenarios, while the AI-services model
suggests strategies for avoiding or containing those risks while gaining the
benefits of high- and SI-level AI capabilities.

• Section 12: AGI agents offer no compelling value
• Section 14: The AI-services model brings ample risks

II.5.7 What can agent-oriented studies of AI safety contribute, if risky
AI agents are optional?

People will want AI systems that plan and act in the world, and some systems
of this class can naturally be modeled as rational, utility-directed agents.
Studies of systems within the rational-agent model can contribute to AI safety
and strategy in multiple ways, including:

• Expanding the range of safe AI-agent architectures by better understand-
ing how to define bounded tasks in a utility-directed framework.

• Expanding safe applications of utility-directed agents to less well-
bounded tasks by better understanding how to align utility functions
with human values.

• Better understanding the boundaries beyond which combinations of
agent architectures and tasks could give rise to classic AGI-agent risks.

• Better understanding how (and under what conditions) evolutionary
pressures could engender perverse strategic behavior in nominally non-
agent-like systems.

• Exploring ways access to high-level AI services could could help to avoid
or mitigate classic agent-centered AI risks.

• Section 10: R&D automation dissociates recursive improvement from AI
agency

• Section 29: The AI-services model reframes the potential roles of AGI agents
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II.6 Reframing near- and long-term considerations in AI safety
and strategy

II.6.1 Could widely available current or near-term hardware support
superintelligence?

Questions of AI safety and strategy become more urgent if future, qualita-
tively SI-level computation can be implemented with greater-than-human task
throughput on affordable, widely-available hardware. There is substantial
reason to think that this condition already holds.

• Section 40: Could 1 PFLOP/s systems exceed the basic
functional capacity of the human brain?

II.6.2 What kinds of near-term safety-oriented guidelines might be
feasible and useful?

Current technology presents no catastrophic risks, and several aspects of
current development practice align not only with safety, but with good practice
in science and engineering. Development of guidelines that codify current
good practice could contribute to near-term AI safety with little organizational
cost, while also engaging the research community in an ongoing process that
addresses longer-term concerns.

• Section 4: The AI-services model includes both descriptive and prescriptive
aspects

• Section 34: R&D automation is compatible with both strong and weak cen-
tralization

• Section 35: Predictable aspects of future knowledge can inform AI safety
strategies

• Section 36: Desiderata and directions for interim AI safety guidelines

II.6.3 How can near-term differential technology development
contribute to safety?

Concerns with AI safety and strategy should influence research agendas in-
tended to promote broad societal benefits. Directions that deserve emphasis
include work on concrete problems in AI safety, on predictive models of hu-
man approval and disapproval, and on capabilities that could facilitate the
detection of potential bad actors.

• Section 22: Machine learning can develop predictive models of human ap-
proval
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• Section 23: AI development systems can support effective human guidance

II.6.4 In the long term, are unaligned superintelligent agents
compatible with safety?

A well-prepared world, able to deploy extensive, superintelligent-level secu-
rity resources, need not be vulnerable to subsequent takeover by superintelli-
gent agents.

• Section 20: Collusion among superintelligent oracles can readily be avoided
• Section 30: Risky AI can help develop safe AI
• Section 31: Supercapabilities do not entail “superpowers”
• Section 32: Unaligned superintelligent agents need not threaten world stabil-

ity

II.7 Conclusions

We can expect to see AI-enabled automation of AI research and development
continue to accelerate, both leveraging and narrowing the scope of human
insights required for progress in AI technologies. Asymptotically-recursive
improvement of AI technologies can scale to a superintelligent level, support-
ing the development of a fully-general range of high-level AI services that
includes the service of developing new services in response to human demand.
Because general AI-development capabilities do not imply general capabilities
in any particular system or agent, classic AGI agents would be potential prod-
ucts of SI-level AI development capabilities, not a path to uniquely valuable
functionality.

Within the space of potential intelligent systems, agent-centered models
span only a small region, and even abstract, utility-directed rational-agent
models invite implicitly anthropomorphic assumptions. In particular, taking
human learning as a model for machine learning has encouraged the conflation
of intelligence-as-learning-capacity with intelligence-as-competence, while
these aspects of intelligence are routinely and cleanly separated AI system
development: Learning algorithms are typically applied to train systems that
do not themselves embody those algorithms.

The service-centered perspective on AI highlights the generality of
Bostrom’s Orthogonality Thesis: SI-level capabilities can indeed be applied
to any task, including services that are (as is typical of services) optimized
to deliver bounded results with bounded resources in bounded times. The
pursuit of Bostrom’s convergent instrumental goals would impede—not
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improve—the performance of such services, yet would be natural for those
same instrumental goals to be hotly pursued by human organizations (or AI
agents) that employ AI services.

Prospects for service-oriented superintelligence reframe the problem of
managing advanced AI technologies: Potentially-risky self-transforming
agents become optional, rather than overwhelmingly valuable, the separation
of basic research from application development can circumvent trade-offs
between development speed and human oversight, and natural task architec-
tures suggest safe implementations of SI-level design and planning services.
In this connection, distinctions between tactical execution and strategic
advice suggest that even stringent competitive pressures need not push
decision-makers to cede strategic decisions to AI systems.

In contrast to unprecedented-breakthrough models that postulate runaway
self-transforming agents, prospects for the incremental emergence of diverse,
high-level AI capabilities promise broad, safety-relevant experience with prob-
lematic (yet not catastrophic) AI behaviors. Safety guidelines can begin by
codifying current safe practices, which include training and re-training di-
verse architectures while observing and studying surprising behaviors. The
development of diverse, high-level AI services also offers opportunities for
safety-relevant differential technology development, including the develop-
ment of common-sense predictive models of human concerns that can be
applied to improve the value and safety of AI services and AI agents.

The R&D-automation/AI-services model suggests that conventional AI
risks (e.g., failures, abuse, and economic disruption) are apt to arrive more
swiftly than expected, and perhaps in more acute forms. While this model
suggests that extreme AI risks may be relatively avoidable, it also empha-
sizes that such risks could arise more quickly than expected. In this context,
agent-oriented studies of AI safety can both expand the scope of safe agent
applications and improve our understanding of the conditions for risk. Mean-
while, service-oriented studies of AI safety could usefully explore potential
applications of high-level services to general problems of value alignment and
behavioral constraint, including the potential architecture of security services
that could ensure safety in a world in which some extremely intelligent agents
are not inherently trustworthy.
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1 R&D automation provides the most direct path
to an intelligence explosion

The most direct path to accelerating AI-enabled progress in AI technol-

ogy leads through AI R&D automation, not through self-transforming

AI agents.

1.1 Summary

AI-enabled development of improved AI algorithms could potentially lead to
an accelerating feedback process, enabling a so-called “intelligence explosion”.
This quite general and plausible concept has commonly been identified with
a specific, challenging, and risky implementation in which a predominant
concentration of AI-development functionality is embodied in a distinct, goal-
directed, self-transforming AI system—an AGI agent. A task-oriented analy-
sis of AI-enabled AI development, however, suggests that self-transforming
agents would play no natural role, even in the limiting case of explosively-fast
progress in AI technology. Because the mechanisms underlying a potential
intelligence explosion are already in operation, and have no necessary con-
nection to unprecedented AGI agents, paths to extremely rapid progress in
AI technology may be both more direct and more controllable than has been
commonly assumed.

1.2 AI-enabled AI development could lead to an intelligence
explosion

As suggested by Good (1966), AI systems could potentially outperform human
beings in the task of AI development, and hence “could design even better
machines; there would then unquestionably be an ‘intelligence explosion,’
and the intelligence of man would be left far behind.”

1.3 Risk models have envisioned AGI agents driving an
intelligence explosion

The widespread (yet questionable) assumption that this feedback process—
“recursive improvement”—would entail self-transformation of a particular AI
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system that engages with the world as an agent1 has motivated a threat model
in which “the machine” might not be “docile enough to tell us how to keep
it under control” (Good 1966, p.33). The surprisingly complex and difficult
ramifications of this threat model have been extensively explored in recent
years (e.g., in Bostrom 2014).

1.4 Self-transforming AI agents have no natural role in recursive
improvement

Advances in AI technology emerge from research and development,2 a process
that comprises a range of different technical tasks. These tasks are loosely
coupled, and none requires universal competence: Consider, for example,
the technology-centered tasks of training-algorithm development, benchmark
development, architecture search, and chip design; and beyond these, appli-
cation development tasks that include human consultation3 and application
prototyping, together with testing, monitoring, and customer service.4

Accordingly, general-purpose, self-transforming AI agents play no natural
role in the process of AI R&D: They are potential (and potentially dangerous)
products—not components—of AI development systems. To the extent that the
concept of “docility” may be relevant to development systems as a whole, this
desirable property is also, by default, deeply ingrained in the nature of the
services they provide.5

1.5 The direct path to an intelligence explosion does not rely on
AGI agents

It may be tempting to imagine that self -improvement would be simpler than
loosely-coupled systemic improvement, but drawing a conceptual bound-
ary around a system does not simplify its contents, and to require that sys-
tems capable of open-ended AI development also exhibit tight integration,
functional autonomy, and operational agency would increase—not reduce—

1. Section 5: Rational-agent models place intelligence in an
implicitly anthropomorphic frame

2. Section 10: R&D automation dissociates recursive improvement from AI agency

3. Section 23: AI development systems can support effective human guidance

4. Section 16: Aggregated experience and centralized learning
support AI-agent applications

5. Section 23: AI development systems can support effective human guidance
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implementation challenges.1 To attempt to place competitive R&D capabilities
inside an agent presents difficulties, yet provides no compensating advantages
in performance or utility.2

The pervasive assumption that an intelligence explosion must await the
development of agents capable of autonomous, open-ended self improve-
ment has encouraged skepticism and complacency3 regarding prospects for
superintelligent-level AI.4 If we think that any given set of human tasks can
be automated, however, than so can any—and in the limit, all—AI R&D
tasks. This proposition seems relatively uncontroversial, yet has profound
implications for the likely trajectory of AI development.

AI-enabled automation of fundamental AI R&D tasks is markedly accelerat-
ing.5 As the range of automated tasks increases, we can expect feedback loops
to tighten, enabling AI development at a pace that, while readily controlled,
has no obvious limits.

Further Reading

• Section 11: Potential AGI-enabling technologies also enable comprehensive
AI services

• Section 12: AGI agents offer no compelling value
• Section 23: AI development systems can support effective human guidance
• Section 24: Human oversight need not impede fast, recursive

AI technology improvement
• Section 30: Risky AI can help develop safe AI
• Section 40: Could 1 PFLOP/s systems exceed the basic

functional capacity of the human brain?

1. Section 11: Potential AGI-enabling technologies also enable comprehensive
AI services

2. Section 12: AGI agents offer no compelling value

3. See Chollet 2017

4. See Kelly 2017

5. For example, see Zoph et al. 2017; Bello et al. 2017; Jaderberg et al. 2017; Chen et al. 2017;
Schrimpf et al. 2017
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2 Standard definitions of “superintelligence” conflate
learning with competence

By implicitly conflating learning with competence, standard definitions

of “superintelligence” fail to capture what we mean by “intelligence” and

obscure much of the potential solution space for AI control problems.

2.1 Summary

Since Good (1966), superhuman intelligence has been equated with super-
human intellectual competence, yet this definition misses what we mean
by human intelligence. A child is considered intelligent because of learning
capacity, not competence, while an expert is considered intelligent because
of competence, not learning capacity. Learning capacity and competent per-
formance are distinct characteristics in human beings, and are routinely
separated in AI development. Distinguishing learning from competence is
crucial to understanding both prospects for AI development and potential
mechanisms for controlling superintelligent-level AI systems.

2.2 Superintelligence has been defined in terms of adult human
competence

Good (1966) defined “ultraintelligence” in terms of distinct, highly competent
entities:

Let an ultraintelligent machine be defined as a machine that can far
surpass all the intellectual activities of any man however clever.

The standard definition of “superintelligence” today (Bostrom 2014) parallels
Good (1966), yet to define superintelligence in terms of adult intellectual
competence fails to capture what we mean by human intelligence.

2.3 “Intelligence” often refers instead to learning capacity

Consider what we mean when we call a person intelligent:

• A child is considered “intelligent” because of learning capacity, not
competence.
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• An expert is considered “intelligent” because of competence, not learn-
ing capacity.

We can overlook this distinction in the human world because learning and
competence are deeply intertwined in human intellectual activities; in consid-
ering prospects for AI, by contrast, regarding “intelligence” as entailing both
learning and competence invites deep misconceptions.

2.4 Learning and competence are separable in principle and
practice

A human expert in science, engineering, or AI research might provide brilliant
solutions to problems, and even if a drug or neurological defect blocked the
expert’s formation of long-term memories, we would recognize the expert’s
intelligence. Thus, even in humans, competence can in principle be dissociated
from ongoing learning, while in AI technology, this separation is simply
standard practice. Regardless of implementation technologies, each released
version of an AI system can be a fixed, stable software object.

Reinforcement learning agents illustrate the separation between learning
and competence: Reinforcement “rewards” are signals that shape learned
behavior, yet play no role in performance. Trained RL agents exercise their
competencies without receiving reward.1

2.5 Patterns of AI learning and competence differ radically from
humans’

AI systems and human beings differ radically in how learning, knowledge
transfer, competence, and experience are connected:

Aspect In humans In AI systems

Performance and learning: Unified Separable
Nature of experience: Individual, sequential Aggregated, parallel
Learning from experience: Inherent Optional
Knowledge transfer: Instruction, study Download

In short, AI systems can act without learning, learn without acting, and
transfer knowledge without instruction or study; further, machine learning

1. Section 18: Reinforcement learning systems are not equivalent
to reward-seeking agents
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can draw on the aggregated, parallel experience1 of indefinitely large numbers
of performing systems, which can then be upgraded by downloading new
software.

2.6 Distinguishing learning from competence is crucial to
understanding potential AI control strategies

Ensuring relatively predictable, constrained behavior is fundamental to AI
control. The tacit assumption that the exercise of competence entails learning
implies that an intelligent system must be mutable, which is to say, potentially
unstable. Further, the tacit assumption that intelligence entails both learning
and competence invites the misconception that AI systems capable of learning
will necessarily have complex states and capabilities that might be poorly
understood.

As this might suggest, conflating intelligence, competence, and learning
obscures much of the potential solution space for of AI control problems (e.g.,
approaches to architecting trustworthy composite oracles).2 This problematic,
subtly anthropomorphic model of intelligence is deeply embedded in current
discussion of AI prospects. If we are to think clearly about AI control problems,
then even comprehensive, superintelligent-level AI capabilities3 must not be
equated with “superintelligence” as usually envisioned.

Further Reading

• Section 5: Rational-agent models place intelligence in an
implicitly anthropomorphic frame

• Section 7: Training agents in human-like environments can provide
useful, bounded services

• Section 15: Development-oriented models align with deeply-structured AI sys-
tems

• Section 16: Aggregated experience and centralized learning
support AI-agent applications

• Section 18: Reinforcement learning systems are not equivalent
to reward-seeking agents

• Section 21: Broad world knowledge can support safe task performance
• Section 30: Risky AI can help develop safe AI

1. Section 16: Aggregated experience and centralized learning
support AI-agent applications

2. Section 20: Collusion among superintelligent oracles can readily be avoided

3. Section 12: AGI agents offer no compelling value
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3 To understand AI prospects, focus on services, not
implementations

Shifting the focus of attention from AI systems to AI services yields a

more uniform and tractable model of artificial general intelligence that

reframes the problem of aligning superintelligent-level AI functionality

with human purposes.

3.1 Summary

From an instrumental perspective, intelligence centers on capabilities rather
than systems, yet models of advanced AI commonly treat the key capability
of general intelligence—the ability to develop novel capabilities—as a black-
box mechanism embedded in a particular kind of system, an AGI agent.
Service-oriented models of general intelligence instead highlight the service
of developing new services as a computational action, and place differentiated
task functionality (rather than unitary, general-purpose systems) at the center
of analysis, linking models to the richly-developed conceptual framework
of software engineering. Service-oriented models reframe the problem of
aligning AI functionality with human goals, providing affordances absent
from opaque-agent models.

3.2 The instrumental function of AI technologies is to provide
services

In the present context, “services” are tasks performed to serve a client. AI sys-
tems may provide services to humans more-or-less directly (driving, designing,
planning, conversing. . . ), but in a software engineering context, one may also
refer to clients and service-providers (servers) when both are computational
processes.

Not every action performs a service. As with human intelligence, intelli-
gence embodied in autonomous systems might not serve the instrumental
goals of any external client; in considering actions of the system itself, the
concept of goals and utility functions would then be more appropriate than
the concept of services.
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3.3 General intelligence is equivalent to general capability
development

General intelligence requires an open-ended ability to develop novel capa-
bilities, and hence to perform novel tasks. For instrumental AI, capabilities
correspond to potential services, and general artificial intelligence can be re-
garded as an open-ended service able to provide new AI services by developing
new capabilities.

3.4 The ability to learn is a capability

In humans (with their opaque skulls and brains), it is natural to distinguish
internal capabilities (e.g., learning to program) from external capabilities (e.g.,
programming a machine), and to treat these as different in kind. In compu-
tational systems, however, there need be no such distinction: To develop a
capability is to implement a system that provides that capability, a process
that need not modify the system that performs the implementation. Remov-
ing artificial distinctions between kinds of capabilities improves the scope,
generality, and homogeneity of models of artificial general intelligence.

3.5 Implementing new capabilities does not require “self
modification”

An incremental computational process may extend the capabilities of a com-
putational system. If the resulting code automatically replaces the previous
version, and if it is convenient to regard that process as internal to the system,
then it may be natural to call the process “self modification”. In many prac-
tical applications, however, a different approach will produce better results:
Data can be aggregated from many instances of a system, then combined
through a centralized, perhaps computationally-intensive development ser-
vice to produce upgraded systems that are then tested and deployed. The
strong advantages of data aggregation and centralized development1 suggest
that it would be a mistake to adopt “self modification” as a default model of
system improvement.

1. Section 16: Aggregated experience and centralized learning
support AI-agent applications.
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3.6 Service-centered models highlight differentiated,
task-focused functionality

Services have structure: Across both human and computational worlds, we
find that high-level services are provided by employing and coordinating
lower-level services. We can expect that services of different kinds (e.g.,
language translation, theorem proving, aircraft design, computer hacking,
computer security, military strategy) will or readily could be developed and
implemented as substantially distinct computational systems, each operating
not only as a server, but as a client that itself employs a range of narrower
services. It is safe to assert that the architecture of complex services and
service-providers will be neither atomized nor monolithic.

3.7 Service-centered models harmonize with practice in software
engineering

AI services are being developed and deployed in the context of other software
services. Decades of research, billions of dollars, and enormous intellectual ef-
fort have been invested in organizing the development of increasingly complex
systems, and universal patterns have emerged; in particular, system architec-
tures are defined by their functions and interfaces—by service provided and
means of employing them. The art of decomposing high-level functions into
lower-level functions has been essential to making systems comprehensible,
implementable, and maintainable. Modern software services are both the
technological milieu of modern AI and a model for how complex information
services emerge and evolve.

Perhaps the most fundamental principles are modularity and abstraction:
partitioning functionality and then decoupling functionality from implemen-
tation. We can expect that these extraordinarily general abstractions can and
will scale to systems implemented by (and to provide) superintelligent-level
services.

3.8 Service-centered AI architectures can facilitate AI alignment

A system-centric model would suggest that general-purpose artificial intel-
ligence must be a property of general-purpose AI systems, and that a fully-
general AI system, to perform its functions, must be a powerful superintelli-
gent agent. From this model and its conclusion, profound challenges follow.

A service-centric model, by contrast, proposes to satisfy general demands
for intelligent services through a general capacity to develop services. This
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general capacity is not itself a thing or an agent, but a pool of functionality
that can be provided by coordination of AI-development services. In this
model, even highly-capable agents implemented at a superintelligent level1

can be stable, and need not themselves embody AI-development functionality.
This model suggests that a range of profound challenges, if recognized, can
also be avoided.

Diverse, potentially superintelligent-level AI services could be coordinated
to provide the service of developing new AI services. Potential components
and functions include:

• Predictive models of human approval, disapproval, and controversies.2

• Consulting services that propose and discuss potential products and
services.3

• Design,4 implementation,5 and optimization services.6

• Specialists in technical security and safety measures.7.
• Evaluation through criticism and red-team/blue-team competitions.8

• Pre-deployment testing and post-deployment assessment.9

• Iterative, experience-based upgrades to products and services.10

Each of the above corresponds to one or more high-level services that would
typically rely on others, whether these are narrower (e.g., language under-
standing and technical domain knowledge) or at a comparable level (e.g.,
predictive models of human (dis)approval). Some services (e.g., criticism and
red-team/blue-team competitions) by nature interact with others that are
adversarial and operationally distinct. Taken together, these services suggest

1. Section 29: The AI-services model reframes the potential roles of AGI agents.

2. Section 22: Machine learning can develop predictive models of human approval.

3. Section 23: AI development systems can support effective human guidance.

4. Section 26: Superintelligent-level systems can safely provide
design and planning services.

5. Section 10: R&D automation dissociates recursive improvement from AI agency.

6. Section 8: Strong optimization can strongly constrain AI capabilities, behavior, and
effects.

7. Section 26: Superintelligent-level systems can safely provide
design and planning services.

8. Section 20: Collusion among superintelligent oracles can readily be avoided.

9. Section 16: Aggregated experience and centralized learning
support AI-agent applications.

10. Section 16: Aggregated experience and centralized learning
support AI-agent applications.
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a range of alignment-relevant affordances that are (to say the least) not salient
in models that treat general intelligence as a black-box mechanism that is
embedded in a general-purpose agent.

Further Reading

• Section 5: Rational-agent models place intelligence in an
implicitly anthropomorphic frame

• Section 10: R&D automation dissociates recursive improvement from AI agency
• Section 11: Potential AGI-enabling technologies also enable comprehensive

AI services
• Section 12: AGI agents offer no compelling value
• Section 16: Aggregated experience and centralized learning

support AI-agent applications
• Section 29: The AI-services model reframes the potential roles of AGI agents
• Section 38: Broadly-capable systems coordinate narrower systems

4 The AI-services model includes both descriptive and
prescriptive aspects

The AI-services model both describes the architecture of current and

prospective high-level AI applications, and prescribes patterns of devel-

opment that can foster safety without impeding the speed and efficiency

of AI development.

4.1 Summary

Does the AI-services model describe prospects for high-level AI application
development, or prescribe strategies for avoiding classic AGI-agent risks? De-
scription and prescription are closely aligned: The services model describes
current and emerging patterns of AI application development, notes these
patterns are accessible, scalable, and align with AI safety, and accordingly
prescribes deliberate adherence to these patterns. The alignment between de-
scriptive and prescriptive aspects of the services model is fortunate, because
strategies for AI safety will be more readily adopted if they align with, rather
than impede, the momentum of AI development.
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4.2 The AI-services model describes current AI development

AI technology today advances through increasingly automated AI research and
development1, and produces applications that provide services2, performing
tasks such as translating languages, steering cars, recognizing faces, and
beating Go masters. AI development itself employs a growing range of AI
services, including architecture search, hyperparameter search, and training
set development.

4.3 AI-service development scales to comprehensive, SI-level
services

The “AI services” concept scales to sets of services that perform an
asymptotically-comprehensive range of tasks, while AI-supported automation
of AI R&D automation scales to asymptotically-recursive, potentially swift
technology improvement. Because systems based on AI services (including
service-development services) scale to a superintelligent level3, the potential
scope of AI services subsumes the instrumental functionality4 that might
otherwise motivate the development of AGI agents.5

4.4 Adherence to the AI-services model aligns with AI safety

Because the AI-services model naturally employs diversity, competition, and
adversarial goals6 (e.g., proposers vs. critics) among service-providers, archi-
tectures that adhere to the (extraordinarily flexible) AI-services model can
readily avoid classic risks associated with superintelligent, self-modifying,
utility-maximizing agents.7

4.5 Adherence to the AI-services model seems desirable, natural,

1. Section 10: R&D automation dissociates recursive improvement from AI agency.

2. Section 3: To understand AI prospects, focus on services, not implementations.

3. Section 1: R&D automation provides the most direct path to
an intelligence explosion.

4. Section 12: AGI agents offer no compelling value.

5. Section 11: Potential AGI-enabling technologies also enable comprehensive
AI services.

6. Section 20: Collusion among superintelligent oracles can readily be avoided.

7. Section 6: A system of AI services is not equivalent to a utility maximizing agent
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and practical

There need be no technological discontinuities on the way to thorough AI R&D
automation and comprehensive AI services, and continued adherence to this
model is compatible with efficient development and application of AI capabil-
ities.1 Traditional models of general AI capabilities, centered on AGI agents,
seem more difficult to implement, more risky, and no more valuable in appli-
cation. Accordingly, guidelines that prescribe adherence to the AI-services
model2 could improve3 prospects for a safe path to superintelligent-level AI
without seeking to impede the momentum of competitive AI development.

Further Reading

• Section 1: R&D automation provides the most direct path to
an intelligence explosion

• Section 11: Potential AGI-enabling technologies also enable comprehensive
AI services

• Section 12: AGI agents offer no compelling value
• Section 14: The AI-services model brings ample risks
• Section 24: Human oversight need not impede fast, recursive

AI technology improvement
• Section 36: Desiderata and directions for interim AI safety guidelines

5 Rational-agent models place intelligence in an
implicitly anthropomorphic frame

It is a mistake to frame intelligence as a property of mind-like systems,

whether these systems are overtly anthropomorphic or abstracted into

decision-making processes that guide rational agents.

5.1 Summary

Concepts of artificial intelligence have long been tied to concepts of mind,
and even abstract, rational-agent models of intelligent systems are built on

1. Section 24: Human oversight need not impede fast, recursive
AI technology improvement.

2. Section 24: Human oversight need not impede fast, recursive
AI technology improvement.

3. Section 14: The AI-services model brings ample risks.
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psychomorphic and recognizably anthropomorphic foundations. Emerging
AI technologies do not fit a psychomorphic frame, and are radically unlike
evolved intelligent systems, yet technical analysis of prospective AI systems
has routinely adopted assumptions with recognizably biological characteris-
tics. To understand prospects for AI applications and safety, we must consider
not only psychomorphic and rational-agent models, but also a wide range of
intelligent systems that present strongly contrasting characteristics.

5.2 The concept of mind has framed our concept of intelligence

Minds evolved to guide organisms through life, and natural intelligence
evolved to make minds more effective. Because the only high-level intelligence
we know is an aspect of human minds, it is natural for our concept of mind
to frame our concept of intelligence. Indeed, popular culture has envisioned
advanced AI systems as artificial minds that are by default much like our own.
AI-as-mind has powerful intuitive appeal.

The concept of AI-as-mind is deeply embedded in current discourse. For
example, in cautioning against anthropomorphizing superintelligent AI,
Bostrom (2014, p.105) urges us to “reflect for a moment on the vastness of the
space of possible minds”, an abstract space in which “human minds form
a tiny cluster”. To understand prospects for superintelligence, however, we
must consider a broader space of potential intelligent systems, a space in
which mind-like systems themselves form a tiny cluster.

5.3 Studies of advanced AI often posit intelligence in a
psychomorphic role

Technical studies of AI control set aside explicitly human psychological con-
cepts by modeling AI systems as goal-seeking rational agents. Despite their
profound abstraction, however, rational-agent models originated as idealiza-
tions of human decision-making, and hence place intelligence in an implicitly
anthropomorphic frame. More concretely, in rational-agent models, the con-
tent of human minds (human values, goals, cognitive limits. . . ) is abstracted
away, yet the role of minds in guiding decisions is retained. An agent’s decision-
making process fills an inherently mind-shaped slot, and that slot frames a
recognizably psychomorphic concept of intelligence.

This is problematic: Although the rational-agent model is broad, it is still
too narrow to serve as a general model of intelligent systems.
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5.4 Intelligent systems need not be psychomorphic

What would count as high-level yet non-psychomorphic intelligence? One
would be inclined to say that we have general, high-level AI if a coordinated
pool of AI resources could, in aggregate:

• Do theoretical physics and biomedical research1

• Provide a general-purpose conversational interface2 for discussing AI
tasks

• Discuss and implement3 designs for self-driving cars, spacecraft, and AI
systems4

• Effectively automate development5 of next-generation AI systems for AI
design

None of these AI tasks is fundamentally different from translating languages,
learning games, driving cars, or designing neural networks—tasks performed
by systems not generally regarded as mind-like. Regarding the potential power
such a coordinated pool of AI services, note that automating the development
of AI systems for AI design6 enables what amounts to recursive improvement.

5.5 Engineering and biological evolution differ profoundly

Rather than regarding artificial intelligence as something that fills a mind-
shaped slot, we can instead consider AI systems as products of increasingly-
automated technology development, an extension of the R&D process that
we see in the world today. This development-oriented perspective on AI
technologies highlights profound and pervasive differences between evolved
and engineered intelligent systems (see table).

5.6 Studies of AI prospects have often made tacitly biological
assumptions

Although technical models of artificial intelligence avoid overtly biological
assumptions, it is nonetheless common (though far from universal!) to assume
that advanced AI systems will:

1. Section 28: Automating biomedical R&D does not require defining human welfare

2. Section 21: Broad world knowledge can support safe task performance

3. Section 23: AI development systems can support effective human guidance

4. Section 12: AGI agents offer no compelling value

5. Section 10: R&D automation dissociates recursive improvement from AI agency

6. Section 10: R&D automation dissociates recursive improvement from AI agency

48



Organization of units: Distinct organisms Systems of components
Origin of new capabilities: Incremental evolution Research, development
Origin of instances: Birth, development Downloading files
Basis for learning tasks: Individual experience Aggregated training data
Transfer of knowledge: Teaching, imitation Copying models, parameters
Necessary competencies: General life skills Specific task performance
Success metric: Reproductive fitness Fitness for purpose
Self-modification: Necessary Optional
Continuity of existence: Necessary Optional
World-oriented agency: Necessary Optional

• Exist as individuals, rather than as systems of coordinated components1

• Learn from individual experience, rather than from aggregated training
data2

• Develop through self-modification, rather than being constructed3 and
updated4

• Exist continuously, rather than being instantiated on demand5

• Pursue world-oriented goals, rather than performing specific tasks6

These assumptions have recognizable biological affinities, and they invite
further assumptions that are tacitly biomorphic, psychomorphic, and even
anthropomorphic.

5.7 Potential mind-like systems are situated in a more general
space of potential intelligent systems

It has been persuasively argued that rational, mind-like superintelligence is
an attractor in the space of potential AI systems, whether by design or inad-
vertent emergence. A crucial question, however, is the extent of the basin of
attraction for mind-like systems within the far more general space of potential
AI systems. The discussion above suggests that this basin is far from coex-
tensive with the space of highly-capable AI systems, including systems that
can, in aggregate, provide superintelligent-level services across an indefinitely

1. Section 15: Development-oriented models align with deeply-structured AI systems

2. Section 16: Aggregated experience and centralized learning
support AI-agent applications

3. Section 21: Broad world knowledge can support safe task performance

4. Section 33: Competitive AI capabilities will not be boxed

5. Section 33: Competitive AI capabilities will not be boxed

6. Section 10: R&D automation dissociates recursive improvement from AI agency
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wide range of tasks.1 We cannot chart the space of potential AI problems and
solutions solely within the confines of rational-agent models, because most of
that space lies outside.

Further Reading

• Section 2: Standard definitions of “superintelligence” conflate
learning with competence

• Section 7: Training agents in human-like environments can provide
useful, bounded services

• Section 10: R&D automation dissociates recursive improvement from AI agency
• Section 12: AGI agents offer no compelling value
• Section 15: Development-oriented models align with deeply-structured AI sys-

tems

6 A system of AI services is not equivalent to a utility
maximizing agent

The conditions for von Neumann–Morgenstern rationality do not imply

that systems composed of AI services will act as utility-maximizing agents,

hence the design space for manageable superintelligent-level systems is

broader than often supposed.

6.1 Summary

Although a common story suggests that any system composed of rational, high-
level AI agents should (or must?) be regarded as a single, potentially powerful
agent, the case for this idea is extraordinarily weak. AI service providers can
readily satisfy the conditions for VNM rationality while employing knowledge
and reasoning capacity of any level or scope. Bostrom’s Orthogonality Thesis
implies that even VNM-rational, SI-level agents need not maximize broad
utility functions, and as is well known, systems composed of rational agents need
not maximize any utility function at all. In particular, systems composed of
competing AI service providers cannot usefully be regarded as unitary agents,
much less as a unitary, forward-planning, utility-maximizing AGI agent. If,
as seems likely, much of the potential solution-space for AI safety requires
affordances like those in the AI-services model, then we must reconsider

1. Section 12: AGI agents offer no compelling value
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long-standing assumptions regarding the dominance of utility-maximizing
AI agents.

6.2 Systems of SI-level agents have been assumed to act as a
single agent

In informal discussions of AI safety, it been widely assumed that, when con-
sidering a system comprising rational, utility-maximizing AI agents, one
can (or should, or even must) model them as a single, emergent agent. This
assumption is mistaken, and worse, impedes discussion of a range of poten-
tially crucial AI safety strategies. To understand how we could employ and
manage systems of rational agents, we can (without loss of generality) start
by considering individual systems (“service providers”) that act as rational
agents.

6.3 Individual service providers can be modeled as individual
agents

The von Neumann-Morgenstern expected-utility theorem shows that, if an
agent meets a set of reasonable conditions defining rational behavior, the
agent must choose actions that maximize the expected value of some function
that assigns numerical values (utilities) to potential outcomes. If we consider
a system that provides a service to be “an agent”, then it is at least reasonable
to regard VNM rationality as a condition for optimality.

6.4 Trivial agents can readily satisfy the conditions for VNM
rationality

To manifestly violate the conditions for VNM rationality, an agent must make
choices that are incompatible with any possible utility function. Accordingly,
VNM rationality can be a trivial constraint: It is compatible, for example,
with a null agent (that takes no actions), with an indifferent agent (that values
all outcomes equally), and with any agent that acts only once (and hence
cannot exhibit inconsistent preferences). Even among non-trivial agents, VNM
rationality need not have deep or complex implications for world-oriented
behaviors. Unlike humans,1 computational systems do not necessarily (or

1. Section 5: Rational-agent models place intelligence in an
implicitly anthropomorphic frame.
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even by default) act in an open world,1 or value the “receipt” of “rewards”,2

or accumulate state changes over time,3 or pursue outcomes beyond the
completion of an immediate, atomic task.4

6.5 Trivially-rational agents can employ reasoning capacity of any
scope

Predictive models are services that can provide building blocks for active AI
services. Potential predictions include:

Text, language → Predicted human translation5

Present state → Predicted state
Agent, State → Predicted action

Action, State → Predicted outcome
Outcome → Predicted human approval6

The archetypical predictive model acts as a fixed function (e.g., a translator
of type T :: string → string). In each instance above, greater knowledge
and reasoning capacity can improve performance; and in each instance, “ac-
tions” (function applications) may be judged by their external instrumental
value, but cannot themselves violate the conditions for VNM rationality. As
suggested by the examples above, fixed predictive models can encapsulate
intelligence for active applications: For example, a system might drive a car
to a user-selected destination while employing SI-level resources that inform
steering decisions by predicting human (dis)approval of predicted outcomes.

6.6 High intelligence does not imply optimization of broad utility
functions

Bostrom’s (2014, p.107) Orthogonality Thesis states that “more or less any
level of intelligence can be combined with more or less any final goal”, and
it follows that high-level intelligence can be applied tasks of bounded scope
and duration that do not engender convergent instrumental goals.7 Note that

1. Section 20: Collusion among superintelligent oracles can readily be avoided

2. Section 18: Reinforcement learning systems are not equivalent
to reward-seeking agents

3. Section 2: Standard definitions of “superintelligence” conflate
learning with competence

4. Section 19: The orthogonality thesis undercuts the generality
of instrumental convergence

7. Section 19: The orthogonality thesis undercuts the generality
of instrumental convergence
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service-providers need not seek to expand their capabilities: This is a task for
service developers, while the service-developers are themselves providers of
service-development services (the implied regress is loopy, not infinite).

6.7 Systems composed of rational agents need not maximize a
utility function

There is no canonical way to aggregate utilities over agents, and game theory
shows that interacting sets of rational agents need not achieve even Pareto
optimality. Agents can compete to perform a task, or can perform adversarial
tasks such as proposing and criticizing actions;1 from an external client’s
perspective, these uncooperative interactions are features, not bugs (consider
the growing utility of generative adversarial networks2). Further, adaptive col-
lusion can be cleanly avoided: Fixed functions, for example, cannot negotiate
or adapt their behavior to align with another agent’s purpose.

In light of these considerations, it would seem strange to think that sets
of AI services (even SI-level services) would necessarily or naturally collapse
into utility-maximizing AI agents.

6.8 Multi-agent systems are structurally inequivalent to single
agents

There is, of course, an even more fundamental objection to drawing a boundary
around a set of agents and treating them as a single entity: In interacting
with a set of agents, one can choose to communicate with one or another (e.g.,
with an agent or its competitor); if we assume that the agents are in effect a
single entity, we are assuming a constraint on communication that does not
exist in the multi-agent model. The models are fundamentally, structurally
inequivalent.

6.9 Problematic AI services need not be problematic AGI agents

Because AI services can in principle be fully general, combinations of services
could of course be used to implement complex agent behaviors up to and in-
cluding those of unitary AGI systems. Further, because evolutionary pressures
can engender the emergence of powerful agents from lesser cognitive systems

1. Section 20: Collusion among superintelligent oracles can readily be avoided

2. https://scholar.google.co.uk/scholar?as_ylo=2017&q=generative+
adversarial+networks&hl=en&as_sdt=0,5
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(e.g., our evolutionary ancestors), the unintended emergence of problematic
agent behaviors in AI systems must be a real concern.1

Unintended, perverse interactions among some sets of service-providers
will likely be a routine occurrence, familiar to contemporaneous researchers
as a result of ongoing experience and AI safety studies.2 Along this develop-
ment path, the implied threat model is quite unlike that of a naïve humanity
abruptly confronting a powerful, world-transforming AGI agent.

6.10 The AI-services model expands the solution-space for
addressing AI risks

The AI-services and AGI-agent models of superintelligence are far from equiv-
alent, and the AI-services model offers a wider range of affordances for struc-
turing AI systems. Distinct, stable predictive models of human approval,3

together with natural applications of competing and adversarial AI services,4

can provide powerful tools for addressing traditional AI safety concerns. If,
as seems likely, much of the potential solution-space for addressing AI x-risk5

requires affordances within the AI-services model, then we must reconsider
long-standing assumptions regarding the dominant role of utility-maximizing
agents, and expand the AI-safety research portfolio to embrace new lines of
inquiry.

Further Reading

• Section 8: Strong optimization can strongly constrain AI capabilities, behavior,
and effects

• Section 11: Potential AGI-enabling technologies also enable comprehensive
AI services

• Section 14: The AI-services model brings ample risks
• Section 20: Collusion among superintelligent oracles can readily be avoided
• Section 19: The orthogonality thesis undercuts the generality

of instrumental convergence
• Section 21: Broad world knowledge can support safe task performance
• Section 32: Unaligned superintelligent agents need not threaten world stability

1. Section 14: The AI-services model brings ample risks

2. Section 35: Predictable aspects of future knowledge can inform AI safety strategies

3. Section 22: Machine learning can develop predictive models of human approval

4. Section 20: Collusion among superintelligent oracles can readily be avoided

5. Section 32: Unaligned superintelligent agents need not threaten world stability
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7 Training agents in human-like environments can
provide useful, bounded services

Training agents with curiosity and imagination to perform human-like

tasks in human-like environments can yield systems that provide

bounded, human-like services.

7.1 Summary

Training agents on ill-defined human tasks may seem to be in conflict with de-
veloping distinct services provided by agents with bounded goals. Perceptions
of conflict, however, seem rooted in anthropomorphic intuitions regarding
connections between human-like skills and human-like goal structures, and
more fundamentally, between learning and competence. These considerations
are important to untangle because human-like training is arguably necessary
to the achievement of important goals in AI research and applications, includ-
ing adaptive physical competencies and perhaps general intelligence itself.
Although performing safely-bounded tasks by applying skills learned through
loosely-supervised exploration appears tractable, human-like world-oriented
learning nonetheless brings unique risks.

7.2 Does training on human-like tasks conflict with the
AI-services model?

Discussions suggest that many researchers see training on human-like tasks
as a critical goal that is potentially in conflict with the AI-services model of
general intelligence. Human-like tasks in natural environments (whether real
or simulated) are often ill-defined and open-ended; they call for exploration of
possibilities and creative planning that goes beyond traditional reinforcement
learning based on clearly-defined reward functions. The AI-services model,
by contrast, emphasizes the role of focused skills applied to bounded goals
aligned with human purposes.

An examination of the distinction between human-like skills and human-
like goal structures reduces the this apparent conflict. Critical differences
emerge through the distinction between intelligence as learning and intelligence
as competence,1, the power of development architectures based on aggregated

1. Section 2: Standard definitions of “superintelligence” conflate
learning with competence
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experience and centralized learning,1 and the role of application architectures
in which tasks are naturally bounded.2

7.3 Human-like learning may be essential to developing general
intelligence

General intelligence, in the sense of general competence, obviously includes
human-like world-oriented knowledge and skills, and it would be surprising
if these could be gained without human-like world-oriented learning. The
practical value of human-like abilities is a major driving force behind AI
research.

A more interesting question is whether human-like learning from human-
like experience is essential to the development of general intelligence in
the sense of general learning ability. This is a plausible hypothesis: Human
intelligence is the only known example of what we consider to be general
intelligence, and it emerged from open-ended interaction of humans with the
world over the time spans of genetic, cultural, and individual development.
Some researchers aim to reproduce this success by imitation.

Beyond the practical value of human-like learning, and the hypothesis that
is may be essential to the development of general intelligence, there is a third
reason to expect AI research to continue in this direction: Since Turing (1950),
AI researchers have defined their objectives in terms of matching human
capabilities in a broad sense, and have looked toward human-like learning,
starting with child-like experience, as a natural path toward this goal.

7.4 Current methods build curious, imaginative agents

In pursuit of AI systems that can guide agents in complex worlds (to date,
usually simulated), researchers have developed algorithms that build ab-
stracted models of the world and use these as a basis for “imagination” to
enable planning, reducing the costs of learning from trial and error (Weber
et al. 2017; Nair et al. 2018; Ha and Schmidhuber 2018; Wayne et al. 2018).
Reinforcement-learning agents have difficulty learning complex sequences
of actions guided only by end-state goals; an effective approach has been
development of algorithms that have “curiosity”, seeking novel experiences

1. Section 16: Aggregated experience and centralized learning
support AI-agent applications

2. Section 38: Broadly-capable systems coordinate narrower systems
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and exploring actions of kinds that might be relevant to any of a range of po-
tential goals (Pathak et al. 2017; Burda et al. 2018). Search guided by curiosity
and imagination can adapt to novel situations and find unexpected solutions.
Agents can also learn by observation of the real world, whether guided by
demonstrations offered by human beings, or by imitating actions in relevant
videos downloaded from the internet (Duan et al. 2017; Peng et al. 2018).

7.5 Human-like competencies do not imply human-like goal
structures

Human beings learn human goal structures, but full human goal structures—
life goals, for example—do not emerge directly or naturally from applying
curiosity, imagination, and imitation to learning even an unbounded range of
bounded tasks. The idea that human-like problem-solving is tightly linked
to human-like goals may stem from what are tacitly biological background
assumptions,1 including evolution under competition, learning from indi-
vidual experience, unitary functionality, and even physical continuity. The
abstraction of AI systems as rational utility-directed agents also proves, on
examination, to draw on tacitly anthropomorphic assumptions.2

Even speaking of “agents learning”, as does the preceding section, is sub-
ject to this criticism. Humans learn by acting, but standard “reinforcement
learning” methods sever this link: “Reinforcement learning” means training
by a reinforcement learning algorithm, yet this algorithm performs no actions,
while a trained agent learns nothing by acting.3 Learning and action can of
course be fused in a single system, yet they need not be, and learning can
be more effective when they are separate.4 Again, it is a mistake to conflate
intelligence as learning capacity with intelligence as competence.5

1. Section ??: ??

2. Section 5: Rational-agent models place intelligence in an
implicitly anthropomorphic frame

3. Section 18: Reinforcement learning systems are not equivalent
to reward-seeking agents

4. Section 16: Aggregated experience and centralized learning
support AI-agent applications

5. Section 2: Standard definitions of “superintelligence” conflate
learning with competence
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7.6 Open-ended learning can develop skills applicable to
bounded tasks

In light of these considerations, it is natural and not necessarily problematic to
pursue systems with general, human-like learning abilities as well as systems
with collectively-general human-like competencies. Open-ended learning
processes and general competencies do not imply problematic goals—and in
particular, do not necessarily engender convergent instrumental goals.1

Even if the development of general intelligence though open-ended
learning-to-learn entailed the development of opaque, unitary, problematic
agents, their capabilities could be applied to the development of compact
systems2 that retain general learning capabilities while lacking the kinds
of information, competencies, and goals that fit the profile of a dangerous
AGI agent. Note that extracting and refining skills from a trained system can
be a less challenging development task than learning equivalent skills from
experience alone.

7.7 Human-like world-oriented learning nonetheless brings
unique risks

These considerations suggest that there need be no direct line from human-
like competencies to problematic goals, yet some human-like competencies
are more problematic than, for example, expertise tightly focused on theorem
proving or engineering design. Flexible, adaptive action in the physical world
can enable disruptive competition in arenas that range from industrial parks
to the battlefields. Flexible, adaptive action in the world of human information
can support interventions that range from political manipulation to sheer
absorption of human attention; the training objectives of the chatbot XiaoIce,
for example, include engaging humans in supportive emotional relationships
while maximizing the length of conversational exchanges (Zhou et al. 2018).
She does this very well, and is continuing to learn.

Adherence to the AI services model by no means guarantees benign behav-
iors or favorable world outcomes,3 even when applied with good intentions.
Because of their potential for direct engagement with the world, however,
human-like learning and capabilities present a special range of risks.

1. Section 19: The orthogonality thesis undercuts the generality
of instrumental convergence

2. Section 30: Risky AI can help develop safe AI

3. Section 14: The AI-services model brings ample risks
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Further Reading

• Section 2: Standard definitions of “superintelligence” conflate
learning with competence

• Section 5: Rational-agent models place intelligence in an
implicitly anthropomorphic frame

• Section 14: The AI-services model brings ample risks
• Section 16: Aggregated experience and centralized learning

support AI-agent applications
• Section 17: End-to-end reinforcement learning is compatible

with the AI-services model
• Section 21: Broad world knowledge can support safe task performance

8 Strong optimization can strongly constrain AI
capabilities, behavior, and effects

Strong (even superintelligent-level) optimization can be applied to in-

crease AI safety by strongly constraining the capabilities, behavior, and

effects of AI systems.

8.1 Summary

Strong “optimization power” has often been assumed to increase AI risks by
increasing the scope of a system’s capabilities, yet task-focused optimization
can have the opposite effect. Optimization of any system for a task constrains
its structure and behavior, implicitly constraining its off-task capabilities: A
competitive race car cannot transport a load of passengers, and a bus will
never set a land speed record. In an AI context, optimization will tend to
constrain capabilities and decrease risks when objectives are bounded in space,
time, and scope, and when objective functions assign costs to both resource
consumption and off-task effects. Fortunately, these are natural conditions for
AI services. Optimizing AI systems for bounded tasks is itself a bounded task,
and some bounded tasks (e.g., predicting human approval) can contribute
to general AI safety. These considerations indicate that strong, even SI-level
optimization can both improve and constrain AI performance.
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8.2 Strong optimization power need not increase AI capability
and risk

“Optimization power” is widely regarded as a source of both AI capabilities
and risks, but this concern is usually expressed in the context of open-ended
objectives pursued with weak resource constraints. For tasks with bounded,
cost-sensitive objectives, however, increasing optimization can have the oppo-
site effect.

8.3 Strong optimization is a strong constraint

Full optimization of a system with respect to a value function typically yields
not only a unique, maximal expected value, but robust constraints on the
system itself. In practice, even approximate optimization strongly constrains
both the structure and behavior of a system, thereby constraining its capabili-
ties. In physical engineering, a race car cannot transport a load of passengers,
and a bus will never set a land speed record; in AI development, an efficient
text-translation system will never plan a vehicle path, and an efficient path-
planning system will never provide translation services. Because off-task
capabilities are costly, they will be excluded by cost-sensitive optimization.

Figure 2: Optimization pressures during AI system development focus
resources on tasks and enable further development based on task-
focused components.
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8.4 Optimization of AI systems can reduce unintended
consequences

Optimization will tend to reduce risks when task objectives are bounded in
space, time, and scope, and when the value-function assigns costs to both re-
source use and unintended human-relevant effects. With bounded objectives,
remote and long-term effects will contribute no value and hence will be unin-
tended, not actively optimized, and likewise for off-task consequences that
are local and near-term. Going further, when costs are assessed for resource
consumption and unintended, human-relevant effects,1 stronger optimiza-
tion will tend to actively reduce unwanted consequences (see Armstrong and
Levinstein [2017] for a concept of reduced-impact AI).

8.5 Strong external optimization can strongly constrain internal
capabilities

If the costs of appropriate computational resources are given substantial
weight, strong optimization of an AI system can act as a strong constraint
on its inputs and model capacity, and on the scope of its mechanisms for
off-task inference, modeling, and planning. The weighting of computational-
cost components need not reflect external economic costs, but can instead be
chosen to shape the system under development.

A major concern regarding strong AI capabilities is the potential for poorly-
defined goals and powerful optimization to lead to perverse plans that (for
example) act through unexpected mechanisms with surprising side-effects.
Optimization to minimize a system’s off-task information, inference, modeling,
and planning, however, can constrain the scope for formulating perverse plans,
because the planning itself may incur substantial costs or require resources
that have been omitted in the interest of efficiency. Optimization for on-task
capabilities can thereby avoid a range of risks that have never been considered.

8.6 Optimizing an AI system for a bounded task is itself a
bounded task

Optimizing a system for a bounded AI task can itself be framed as a bounded
AI task. The task of designing and optimizing an AI system for a given
task using given machine resources within an acceptably short time does not
entail open-ended, world-affecting activity, and likewise for designing and

1. Section 22: Machine learning can develop predictive models of human approval
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optimizing AI systems for the tasks involved in designing and optimizing AI
systems for the tasks of designing and optimizing AI systems.

8.7 Superintelligent-level optimization can contribute to AI
safety

Given that optimization can be used to shape AI systems that perform a range
of tasks with little or no catastrophic risk, it may be useful to seek tasks that,
in composition with systems that perform other tasks, directly reduce the risks
of employing systems with powerful capabilities. A leading example is the
development of predictive models of human relevance and human approval
based on large corpora of human opinions and crowd-sourced challenges.
Ideally, such models would have access to general world knowledge and be
able to engage in general reasoning about cause, effect, and the range of
potential human reactions. Predictive models of human approval1 would be
useful for augmenting human oversight,2 flagging potential concerns,3 and
constraining the actions of systems with different capabilities.4 These and
similar applications are attractive targets for shaping AI outcome through
differential technology development.

Bad actors could of course apply strongly optimized AI technologies—even
approval modeling—to bad or risky ends (e.g., open-ended exploitation of
internet access for wealth maximization). Bad actors and bad actions are a
crucial concern in considering strategies for managing a safe transition to
a world with superintelligent-level AI, yet effective countermeasures may
themselves require strong, safe optimization of AI systems for strategically
important tasks. The development of strong optimization power is a given,
and we should not shy away from considering how strongly optimized AI
systems might be used to solve problems.

Further Reading

• Section 2: Standard definitions of “superintelligence” conflate
learning with competence

• Section 12: AGI agents offer no compelling value

1. Section 22: Machine learning can develop predictive models of human approval

2. Section 24: Human oversight need not impede fast, recursive
AI technology improvement

3. Section 20: Collusion among superintelligent oracles can readily be avoided

4. Section 20: Collusion among superintelligent oracles can readily be avoided
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• Section 20: Collusion among superintelligent oracles can readily be avoided
• Section 21: Broad world knowledge can support safe task performance
• Section 22: Machine learning can develop predictive models of human approval
• Section 30: Risky AI can help develop safe AI

9 Opaque algorithms are compatible with
functional transparency and control

Although transparency is desirable, opacity at the level of algorithms

and representations need not greatly impair understanding of AI systems

at higher levels of functionality.

9.1 Summary

Deep-learning methods employ opaque algorithms that operate on opaque
representations, and it would be unwise to assume pervasive transparency in
future AI systems of any kind. Fortunately, opacity at the level of algorithms
and representations is compatible with transparency at higher levels of system
functionality. We can shape information inputs and training objectives at com-
ponent boundaries, and can, if we choose, also shape and monitor information
flows among opaque components in larger systems. Thus, substantial high-
level understanding and control is compatible with relaxed understanding
of internal algorithms and representations. As always, the actual application
of potential control measures can be responsive to future experience and
circumstances.

9.2 Deep-learning methods are opaque and may remain so

The products of deep learning are notoriously opaque: Numerical transforma-
tions produce numerical vectors that can be decoded into useful results, but
the encodings themselves are often incomprehensible. Opacity is the norm,
and interpretability is the exception. In considering problems of AI control
and safety, it would be unwise to assume pervasive transparency.

9.3 The scope of information and competencies can be fuzzy, yet
bounded

Although we may lack knowledge of how a deep learning system represents
information and algorithms, we can have substantial knowledge of the scope
of its information and competencies. For example, information that is absent
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from a system’s inputs (in both training and use) will be absent from its
algorithms, state, and outputs. Inference capabilities may blur the scope
of given information, but only within limits: A Wikipedia article cannot
be inferred from language-free knowledge of physics. Likewise, while the
scope of a system’s competencies may be fuzzy, competencies far from a
system’s task focus (e.g., theorem-proving competencies in a vision system,
or vehicle-guidance competencies in a language-translation system) will be
reliably absent. Bounds on information and competencies are natural and
inevitable, and can be applied to help us understand and constrain AI-system
functionality.

9.4 Restricting resources and information at boundaries
constrains capabilities

Several obvious affordances for control are available at the boundaries of
AI systems. For example, tasks that require absent information cannot be
performed, and the distinct role of physical memory in digital systems enables
a clean separation of episodic task performance from cumulative learning.1

Controls at boundaries have transitive effects within systems of collaborating
components: A component cannot transfer information that it does not have,
regardless of how internal communications are encoded.

Further, competitive systems must deliver results in bounded times and
with bounded resources. Optimization pressures (e.g., on model capacity,
training time, and execution cost) will tend to exclude investments in off-task
capacities and activities, and stronger optimization will tend to strengthen,
not weaken, those constraints.2 A system trained to provide services to other
systems might perform unknown tasks, yet those tasks will not be both costly
and irrelevant to external objectives.

These considerations are fundamental: They apply regardless of whether
an AI system is implemented on digital, analog, or quantum computational
hardware, and regardless of whether its algorithms are neural and trained, or
symbolic and programmed. They scale to task domains of any scope, and to
systems of any level of intelligence and competence.

1. Section 2: Standard definitions of “superintelligence” conflate
learning with competence

2. Section 8: Strong optimization can strongly constrain AI capabilities, behavior, and effects
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9.5 Providing external capabilities can constrain internal
capabilities

Under appropriate optimization pressures, a system trained with access to an
efficient resource with particular capabilities1 will not itself develop equiv-
alent capabilities, and use of those particular capabilities will then involve
use of an identifiable resource. This mechanism provides an affordance for
shaping the organization of task-relevant capabilities in the development of
piecewise-opaque systems. Potential advantages include not only functional
transparency, but opportunities to ensure that components (vision systems,
physical models, etc.) are well-trained, well-tested, and capable of good
generalization within their domains.

9.6 Deep learning can help interpret internal representations

Deep learning techniques can sometimes provide insight into the content of
opaque, learned representations. To monitor the presence or absence of a
particular kind of information in an opaque (but not adversarially opaque)
representation, deep learning can be applied to attempt to extract and apply
that information. For example, a representation may be opaque to humans,
but if it supports an image-recognition task, then the representation must
contain image information; if not, then it likely doesn’t.

9.7 Task-space models can enable a kind of “mind reading”

The task-space model2 of general intelligence suggests that the subtasks en-
gaged by problem-solving activities can (both in principle and in practice)
be associated with regions in semantic spaces. Different high-level tasks will
generate different footprints of activity in the space of subtasks, and one need
not understand how every subtask is represented or performed to understand
what the task is about.

Restricting the range of task-space accessible to a system could potentially
provide a mechanism for constraining its actions, while observing access
patterns could potentially provide the ability to monitor the considerations
that go into a particular action. For example, it would be unremarkable for a
system that organizes food production to access services applicable to food
preparation and delivery, while a system that accesses services applicable to

1. Section 39: Tiling task-space with AI services can provide general AI capabilities

2. Section 39: Tiling task-space with AI services can provide general AI capabilities
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synthesizing neurotoxins for delivery in food might trigger a warning. Such
insights (a kind of “mind reading”) could be useful both in advancing AI safety
and in solving more prosaic problems of system development and debugging.

9.8 The application of control measures can be adapted to
experience and circumstances

Whether any particular set of control measures should be applied, and to what
extent, is a question best answered by the AI community as circumstances arise.
Experience will provide considerable knowledge1 of which kinds of systems
are reliable, which fail, and which produce surprising (perhaps disturbingly
surprising) results. Along the way, conventional concerns regarding safety
and reliability will drive efforts to make systems better understood and more
predictable.

To catalog a range of potential control measures (e.g., attention to informa-
tion content, task focus, and optimization pressures) is not to assert that any
particular measure or intensity of application will be necessary or sufficient.
The value of inquiry in this area is to explore mechanisms that could be applied
in response to future experience and circumstances, and that may deserve
attention today as safety-relevant components of general AI research.

Further Reading

• Section 8: Strong optimization can strongly constrain AI capabilities, behavior,
and effects

• Section 35: Predictable aspects of future knowledge can inform AI safety strategies
• Section 38: Broadly-capable systems coordinate narrower systems
• Section 39: Tiling task-space with AI services can provide general AI capabilities

1. Section 35: Predictable aspects of future knowledge can inform AI safety strategies
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10 R&D automation dissociates recursive
improvement from AI agency

In automation of AI research and development, AI agents are useful

products, not necessary components.

10.1 Summary

AI development processes can be automated by applying specialized AI com-
petencies to AI-development tasks, and incremental automation of AI devel-
opment systems can continue to reflect the familiar organization of research
and development processes. Asymptotically recursive technology improve-
ment requires neither self-improving components nor agents that act in the
world, and can provide general AI functionality without recourse to general
AI agents. The R&D-automation model offers a range of potential affordances
for addressing AI safety concerns.

10.2 R&D automation can employ on diverse, specialized AI tools

AI research and development, like other areas of software technology, exploits
a growing range of automated tools. As AI technologies approach or exceed
human competence in AI development tasks, we can expect to see incremental
automation throughout the development process, asymptotically enabling
recursive technology improvement. The development-automation model
differs from classic models of recursive improvement in that it does not call
for self-improving general-purpose agents.

10.3 AI R&D automation will reflect universal aspects of R&D
processes

The R&D process links the discovery of general principles and mechanisms
to the construction of complex systems tailored to specific functions and
circumstances. The R&D-automation model describes AI development today,
and increasing automation of AI development seems unlikely to obliterate
this deep and universal task structure.
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Figure 3: Schematic model of the current AI research and development
pipeline.

10.4 AI R&D automation will reflect the structure of AI
development tasks

In AI R&D, the elements of development tasks are organized along lines
suggested by the following diagram:

Figure 4: Schematic model of an AI-enabled application-oriented
system development task that draws on a range of previously developed
components.

In architecting AI systems, application developers can draw on relatively
generic sets of trainable components and training methods, and can compose
these with previously developed resources. The resulting architectures are
trained with task-specific performance metrics and corpora, and revised based
on results.

Incremental automation does not change the fundamental structure of
development tasks: The R&D automation model accommodates AI-enabled
innovation in components, methods, resources, training corpora, and per-
formance metrics; the model also accommodates ongoing involvement of
human developers in any role. Over time, we can expect human roles to shift
from technical implementation to general task description and performance
evaluation.
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10.5 AI R&D automation leads toward recursive technology
improvement

In the schematic diagram above, an AI builder is itself an R&D product, as are
AI systems that perform exploratory AI research. Pervasive and asymptotically
complete AI-enabled automation of AI R&D can enable what amounts to
recursive improvement, raising the yield of AI progress per unit of human
effort without obvious bound. In this model there is no locus of activity that
corresponds to recursive “self” improvement; as we see in today’s AI R&D
community, loosely coupled activities are sufficient to advance all aspects of
AI technology.

10.6 General SI-level functionality does not require general
SI-level agents

The classic motivation for building self-improving general-purpose superintel-
ligent agents is to provide systems that can perform a full range of tasks with
superintelligent competence. The R&D-automation model, however, shows
how to provide, on demand, systems that can perform any of a fully general
range of tasks without invoking the services of a fully general agent.

10.7 The R&D-automation model reframes the role of AI safety
studies and offers potential affordances for addressing AI
safety problems

In the present framework, agent-oriented AI safety research plays the dual
roles of expanding the scope of safe agent functionality and identifying classes
of systems and applications (including tightly coupled configurations of R&D
components) in which radically unsafe agent behaviors might arise uninten-
tionally. In other words, agent-oriented safety work can both find safe paths
and mark potential hazards.

The R&D-automation model describes component-based systems that are
well-suited to the production of component-based systems, hence it invites
consideration of potential safety-relevant affordances of deeply-structured
AI implementations. In particular, the prospect of safe access to superintelli-
gent machine learning invites consideration of predictive models of human
approval that are trained on large corpora of human responses to events
and actions, and subsequently serve as components of structured, approval-
directed AI agents.
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Further Reading

• Section 12: AGI agents offer no compelling value
• Section 15: Development-oriented models align with deeply-structured AI sys-

tems
• Section 22: Machine learning can develop predictive models of human approval
• Section 24: Human oversight need not impede fast, recursive

AI technology improvement
• Section 30: Risky AI can help develop safe AI
• Section 35: Predictable aspects of future knowledge can inform AI safety strategies

11 Potential AGI-enabling technologies also enable
comprehensive AI services

If future AI technologies can implement self-transforming AGI agents,

then similar capabilities could more easily be applied to implement open,

comprehensive AI services.

11.1 Summary

In catastrophic runaway-AI scenarios, systems capable of self-improvement
lead to—and hence precede—opaque AGI agents with general superhuman
competencies. Systems capable of self-improvement would, however, embody
high-level development capabilities that could first be exploited to upgrade
ongoing, relatively transparent AI R&D automation. Along this path, trans-
parency and control need not impede AI development, and optimization
pressures can sharpen task focus rather than loosen constraints. Thus, in
scenarios where advances in technology would enable the implementation of
powerful but risky AGI agents, those same advances could instead be applied
to provide comprehensive AI services—and stable, task-focused agents—while
avoiding the potential risks of self-modifying AGI-agents.

11.2 In runaway-AGI scenarios, self-improvement precedes risky
competencies

Self-improving, general-purpose AI systems would, by definition, have the
ability to build AI systems with capabilities applicable to AI development
tasks. In classic AGI-takeover scenarios, the specific competencies that en-
able algorithmic self-improvement would precede more general superhuman
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competencies in modeling the world, defining world-changing goals, and pur-
suing (for example) a workable plan to seize control. Strong AI development
capabilities would precede potential catastrophic threats.

11.3 “Self”-improvement mechanisms would first accelerate R&D

In any realistic development scenario, highly-capable systems will follow
less-capable predecessors (e.g., systems with weaker architectures, smaller
datasets, or less training), and developers will have practical knowledge of
how to instantiate, train, and apply these systems. Along paths that lead to
systems able to implement more capable systems with little human effort,1 it
will be natural for developers to apply those systems to specific development
tasks. Developing and packaging an opaque, self-improving AI system might
or might not be among those tasks.

11.4 “Self”-improvement mechanisms have no special connection
to agents

The option to develop and apply self-improving AGI systems would be com-
pelling only if there were no comparable or superior alternatives. Given
AI systems able to implement a wide range of AI systems, however, there
would be no compelling reason to package and seal AI development processes
in an opaque box. Quite the opposite: Practical considerations generally
favor development, testing, and integration of differentiated components.2

Potential AGI-level technologies could presumably automate such processes,
while an open system-development architecture would retain system-level
transparency and process control.

11.5 Transparency and control need not impede the pace of AI
development

Because the outputs of basic research—the building blocks of technology
improvement—need not directly affect the world, the need for human inter-
vention in basic research is minimal and need not impede progress.3 Mean-
while, in applications, guiding development to serve human purposes is not a

1. Section 10: R&D automation dissociates recursive improvement from AI agency

2. Section 15: Development-oriented models align with deeply-structured AI systems

3. Section 24: Human oversight need not impede fast, recursive
AI technology improvement
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burden, but an inherent part of the task of providing beneficial AI services.1

Note that developing and applying AI systems to help humans guide develop-
ment is itself a task within the scope of comprehensive AI R&D automation.2

11.6 Optimization pressures sharpen task focus

Thinking about prospects of applying high-level AI capabilities to the design
and optimization of AI systems has been muddied by the tacit assumption
that optimizing performance implies relaxing constraints on behavior. For any
bounded task, however, this is exactly wrong: The stronger the optimization,
the stronger the constraints.3 In the context of AI-enabled AI-development, ef-
fective optimization of a development system will tend to minimize resources
spent on off-task modeling and search. Regardless of their internal complexity,
optimized components of AI development systems will have no spare time to
daydream about world domination.

11.7 Problematic emergent behaviors differ from classic AGI
risks

Systems of optimized, stable components can be used to implement fully
general mechanisms, hence some configurations of components could exhibit
problematic emergent behaviors of unexpected kinds. We can expect and
encourage developers to note and avoid architectures of the kind that produce
unexpected behaviors,4 perhaps aided by AI-enabled analysis of both AI ob-
jectives,5 and proposed implementations.6 Avoiding problematic emergent
behaviors in task-oriented systems composed of stable components is inher-
ently more tractable than attempting to confine or control a self-modifying
AGI system that might by default act as superintelligent adversarial agent.

1. Section 23: AI development systems can support effective human guidance

2. Section 23: AI development systems can support effective human guidance and Sec-
tion 22: Machine learning can develop predictive models of human approval

3. Section 8: Strong optimization can strongly constrain AI capabilities, behavior, and effects

4. Section 35: Predictable aspects of future knowledge can inform AI safety strategies

5. Section 22: Machine learning can develop predictive models of human approval

6. Section 26: Superintelligent-level systems can safely provide
design and planning services
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11.8 Potential AGI technologies might best be applied to
automate development of comprehensive AI services

In summary, an AI technology base that could implement powerful self-
improving AGI agents could instead be applied to implement (or more real-
istically, upgrade) increasingly automated AI development, a capability that
in turn can be applied to implement a comprehensive range of AI applica-
tions. Thus, swift, AI-enabled improvement of AI technology does not require
opaque self-improving systems,1 and comprehensive AI services need not be
provided by potentially risky AGI agents.2

Further Reading

• Section 10: R&D automation dissociates recursive improvement from AI agency
• Section 12: AGI agents offer no compelling value
• Section 15: Development-oriented models align with deeply-structured AI sys-

tems
• Section 24: Human oversight need not impede fast, recursive

AI technology improvement
• Section 30: Risky AI can help develop safe AI
• Section 33: Competitive AI capabilities will not be boxed

12 AGI agents offer no compelling value

Because general AI-development capabilities can provide stable, com-

prehensive AI services, there is no compelling, practical motivation for

undertaking the more difficult and potentially risky implementation of

self-modifying AGI agents.

12.1 Summary

Practical incentives for developing AGI agents appear surprisingly weak. Pro-
viding comprehensive AI services calls for diverse, open-ended AI capabilities
(including stable agent services), but their development does not require
agents in any conventional sense. Although both the AGI and AI-service
models can deliver general capabilities, their differences have a range of conse-
quences; for example, by enabling access to stable AI components, competing

1. Section 10: R&D automation dissociates recursive improvement from AI agency

2. Section 12: AGI agents offer no compelling value
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implementations, and adversarial checking mechanisms, the CAIS model of-
fers safety-relevant affordances that the classic AGI model does not. Both the
CAIS and AGI models propose recursive improvement of AI technologies, yet
they differ in their accessibility: While CAIS models anticipate accelerating
R&D automation that extends conventional development methodologies, AGI
models look toward conceptual breakthroughs to enable self-improvement
and subsequent safe application. Because AI development services could be
used to implement AGI agents, the CAIS model highlights the importance of
classic AGI-safety problems, while access to SI-level services could potentially
mitigate those same problems.

12.2 Would AGI development deliver compelling value?

It is widely believed that the quest to maximize useful AI capabilities will
necessarily culminate in artificial general intelligence (AGI), which is taken
to imply AI agents that would be able to self-improve to a superintelligent
level, potentially gaining great knowledge, capability, and power to influence
the world. It has been suggested AGI may be effectively unavoidable either
because:

1. Self-improving AI may almost unavoidably generate AGI agents, or
2. AGI agents would provide unique and compelling value, making their

development almost irresistibly attractive.

However, the non-agent-based R&D automation dissociates recursive improve-
ment from AI agency undercuts claim (1), while the prospective result of
ongoing R&D automation, general AI development services, undercuts claim
(2).

12.3 AI systems deliver value by delivering services

In practical terms, we value potential AI systems for what they could do,
whether driving a car, designing a spacecraft, caring for a patient, disarming
an opponent, proving a theorem, or writing a symphony. Scientific curiosity
and long-standing aspirations will encourage the development of AGI agents
with open-ended, self-directed, human-like capabilities, but the more pow-
erful drives of military competition, economic competition, and improving
human welfare do not in themselves call for such agents. What matters in
practical terms are the concrete AI services provided (their scope, quality, and
reliability) and the ease or difficulty of acquiring them (in terms of time, cost,
and human effort).
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12.4 Providing diverse AI services calls for diverse AI capabilities

Diverse AI services resolve into diverse tasks, some shared across many do-
mains (e.g., applying knowledge of physical principles, of constraints on
acceptable behavior, etc.), while other tasks are specific to a narrower range
of domains. Reflection on the range of potential AI services (driving a car,
proving a theorem. . . ) suggests the diversity of underlying AI tasks and
competencies. We can safely assume that:

• No particular AI service will require all potential AI competencies.
• Satisfying general demands for new AI services will require a general

ability to expand the scope of available competencies.

12.5 Expanding AI-application services calls for AI-development
services

Developing a new AI service requires understanding its purpose (guided by
human requests, inferred preferences, feedback from application experience,
etc.), in conjunction with a process of design, implementation, and adapta-
tion that produces and improves the required AI capabilities. Capability-
development tasks can be cast in engineering terms: They include function
definition, design and implementation, testing and validation, operational
deployment, in-use feedback, and ongoing upgrades.

12.6 The AGI and CAIS models organize similar functions in
different ways

In the CAI-services model, capability-development functions are explicit,
exposed, and embodied in AI system components having suitable capacities
and functional relationships. In the CAIS model, AI-enabled products are
distinct from AI-enabled development systems, and the CAIS model naturally
emerges from incremental R&D automation.

In the classic AGI-agent model, by contrast, capability-development func-
tions are implicit, hidden, and embodied in a single, conceptually-opaque,
self-modifying agent that pursues (or is apt to pursue) world-oriented goals.
Thus, capability development is internal to an agent that embodies both the
development mechanism and its product. Implementation of the AGI model
is widely regarded as requiring conceptual breakthroughs.
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12.7 The CAIS model provides additional safety-relevant
affordances

The CAIS model both exemplifies and naturally produces deeply structured AI
systems1 based on identifiable, functionally-differentiated components. Struc-
tured architectures provide affordances for both component- and system-level
testing, and for the re-use of stable, well-tested components (e.g., for vision,
motion planning, language understanding. . . ) in systems that are adapted to
new purposes. These familiar features of practical product development and
architecture can contribute to reliability in a conventional sense, but also to
AI safety in the context of superintelligent-level competencies.

In particular, the CAIS model offers component and system-level affor-
dances for structuring information inputs and retention, mutability and sta-
bility, computational resource allocation, functional organization, component
redundancy, and internal process monitoring; these features distance the CAIS
from opaque, self-modifying agents, as does the fundamental separation of AI
products from AI development processes. In the CAIS context, components
(e.g., predictive models of human preferences) can be tested separately (or in
diverse testbed contexts) without the ambiguities introduced by embedding
similar functionality in systems with agent-level goals and potential incentives
for deception.

Constraining AI systems through external, structural affordances:

Knowledge metering to bound information scope
Model distillation to bound information quantity

Checkpoint/restart to control information retention
Focused curricula to train task specialists

Specialist composition to address complex tasks
Optimization applied as a constraint

Figure 5: AI development processes provide affordances for constrain-
ing AI systems that can be effective without insights into their internal
representations. Points of control include information inputs, model
size, (im)mutability, loss functions, functional specialization and com-
position, and optimization pressures that tend to become sharper as im-
plementation technologies improve. (Adapted from Drexler [2015])

1. Section 15: Development-oriented models align with deeply-structured AI systems
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12.8 The CAIS model enables competition and adversarial checks

In developing complex systems, it is common practice to apply multiple ana-
lytical methods to a proposed implementation, to seek and compare multiple
proposals, to submit proposals to independent review, and where appropriate,
to undertake adversarial red-team/blue-team testing. Each of these measures
can contribute to reliability and safety, and each implicitly depends on the
availability of independent contributors, evaluators, testers, and competitors.
Further, each of these essentially adversarial services scales to the superintel-
ligent limit.

In the CAIS model, it is natural to produce diverse, independent, task-
focused AI systems that provide adversarial services. By contrast, it has
been argued that, in the classic AGI model, strong convergence (through
shared knowledge, shared objectives, and strong utility optimization under
shared decision theories) would render multiple agents effectively equivalent,
undercutting methods that would rely on their independence. Diversity
among AI systems is essential to providing independent checks, and can
enable the prevention of potential collusive behaviors.1

12.9 The CAIS model offers generic advantages over classic AGI
models

• CAIS (like AGI) encompasses recursive improvement of AI technologies,
and hence could enable full-spectrum AI services that operate at a
superintelligent level.

• CAIS (but not AGI) grows out of incremental R&D automation within
the architecture of established development methodologies.

• AGI (but not CAIS) calls for conceptual breakthroughs to enable both
implementation and subsequent safe application.

• CAIS (but not AGI) offers structural affordances for increasing reliability
and safety, including diverse adversarial checks that scale to superintel-
ligent systems.

12.10 CAIS affordances mitigate but do not solve AGI-control
problems

Because systems that can implement AI functionality at a superintelligent
level can presumably be used to implement classic AGI systems, CAI ser-
vices would lower barriers to the development of AGI. Given the widespread

1. Section 20: Collusion among superintelligent oracles can readily be avoided
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desire to realize the dream of AGI, it seems likely that AGI will, in fact,
be realized unless actively prevented. Nonetheless, in a world potentially
stabilized by security-oriented applications of superintelligent-level AI capa-
bilities, prospects for the emergence of AGI systems may be less threatening.
Superintelligent-level aid in understanding and implementing solutions to
the AGI control problem1 and could greatly improve our strategic position.

There is no bright line between safe CAI services and unsafe AGI
agents, and AGI is perhaps best regarded as a potential branch from an
R&D-automation/CAIS path. To continue along safe paths from today’s early
AI R&D automation to superintelligent-level CAIS calls for an improved
understanding of the preconditions for AI risk, while for any given level of
safety, a better understanding of risk will widen the scope of known-safe
system architectures and capabilities.

The analysis presented above suggests that CAIS models of the emergence of
superintelligent-level AI capabilities, including AGI, should be given substantial
and arguably predominant weight in considering questions of AI safety and
strategy.

Further Reading

• Section 5: Rational-agent models place intelligence in an
implicitly anthropomorphic frame

• Section 7: Training agents in human-like environments can provide
useful, bounded services

• Section 10: R&D automation dissociates recursive improvement from AI agency
• Section 15: Development-oriented models align with deeply-structured AI sys-

tems
• Section 23: AI development systems can support effective human guidance
• Section 24: Human oversight need not impede fast, recursive

AI technology improvement

1. Section 20: Collusion among superintelligent oracles can readily be avoided
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13 AGI-agent models entail greater complexity than
CAIS

Relative to comprehensive AI services (CAIS), and contrary to

widespread intuitions, the classic AGI-agent model implicitly increases

(while obscuring) the complexity and challenges of self-improvement,

general functionality, and AI goal alignment.

13.1 Summary

Recent discussions suggest that it would be useful to compare the relative
complexities of AGI-agent and comprehensive AI services (CAIS) models
of general intelligence. The functional requirements for open-ended self-
improvement and general AI capabilities are the same in both instances,
but made more difficult in classic AGI models, which require that fully-
general functionality be internal to an autonomous, utility-directed agent.
The rewards for accomplishing this compression of functionality are difficult
to see. To attempt to encompass general human goals within the utility
function of a single, powerful agent would reduce none of the challenges
of aligning concrete AI behaviors with concrete human goals, yet would
increase the scope for problematic outcomes. This extreme compression and
its attendant problems are unnecessary: Task-oriented AI systems within the
CAIS framework could apply high-level reasoning and broad understanding
to a full spectrum of goals, coordinating open-ended, collectively-general AI
capabilities to provide services that, though seamlessly integrated, need not
individually or collectively behave as a unitary AGI agent.

13.2 Classic AGI models neither simplify nor explain self
improvement

The classic AGI agent model posits open-ended self improvement, but this
simple concept hides what by nature must be functionally equivalent to
fully-automated and open-ended AI research and development. Hiding the
complexity of AI development in a conceptual box provides only the illusion
of simplicity. Discussion within the classic AGI model typically assumes an
unexplained breakthrough in machine learning capabilities. For simplicity,
an AI-services model could arbitrarily assume equivalent capabilities (per-
haps based on the same hypothetical breakthrough), a deeper model offers a

79



framework for considering their implementation. To be comprehensive, AI
services must of course include the service of developing new services, and
current research practice shows that expanding the scope of AI services can
be both incremental and increasingly automated.

13.3 Classic AGI models neither simplify nor explain general AI
capabilities

Similarly, the classic AGI agent model posits systems that could provide
general, fluidly-integrated AI capabilities, but this seemingly simple concept
hides what by nature must be functionally equivalent to a comprehensive
range of AI services and coordination mechanisms. The classic model assumes
these capabilities without explaining how they might work; for simplicity,
an AI-services model could arbitrarily assume equivalent capabilities, but a
deeper model offers a framework for considering how diverse, increasingly
comprehensive capabilities could be developed and integrated by increasingly
automated means.

Note that, by intended definition, the “C” in CAIS is effectively equivalent
to the “G” in AGI. Accordingly, to propose that an AGI agent could provide
services beyond the scope of CAIS is either to misunderstand the CAIS model,
or to reject it, e.g., on grounds of feasibility or coherence. To be clear, fully
realized CAIS services would include the service of coordinating and provid-
ing a seamless interface to other services, modeling behaviors one might have
attributed to aligned AGI agents. The CAIS model of course extends to the
provision of potentially dangerous services, including the service of building
unaligned AGI agents.

13.4 Classic AGI models increase the challenges of AI goal
alignment

The classic AGI model posits the construction of a powerful, utility-directed,
superintelligent agent, a conceptual move that both engenders the problems
of aligning a superintelligent agent’s overall goals with human values and
amalgamates and abstracts away the concrete problems that arise in aligning
specific, useful behaviors with diverse and changing human goals. Although
a simplified AI-services model could arbitrarily assume aligned systems with
bounded goals and action spaces, a deeper model offers a framework for
considering how such systems could be developed and how their development
might go wrong—for example, by indirectly and inadvertently giving rise to
agents with problematic goals and capabilities. Many of the questions first
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framed as problems of AGI safety still arise, but in a different and perhaps
more tractable systemic context.

13.5 The CAIS model addresses a range of problems without
sacrificing efficiency or generality

To summarize, in each of the areas outlined above, the classic AGI model
both obscures and increases complexity: In order for general learning and
capabilities to fit a classic AGI model, they must not only exist, but must be
integrated into a single, autonomous, self-modifying agent. Further, achieving
this kind of integration would increase, not reduce, the challenges of aligning
AI behaviors with human goals: These challenges become more difficult when
the goals of a single agent must motivate all (and only) useful tasks.

Agent-services that are artificial, intelligent, and general are surely useful,
both conceptually and in practice, but fall within the scope of comprehensive
agent (and non-agent) AI services. The key contribution of the CAIS model is
to show how integrated, fully-general AI capabilities could be provided within
an open-ended architecture that is natural, efficient, relatively transparent,
and quite unlike a willful, uniquely-powerful agent.

Further Reading

• Section 1: R&D automation provides the most direct path to
an intelligence explosion

• Section 6: A system of AI services is not equivalent to a utility maximizing agent
• Section 12: AGI agents offer no compelling value
• Section 11: Potential AGI-enabling technologies also enable comprehensive

AI services

14 The AI-services model brings ample risks

High-level AI services could facilitate the development or emergence of

dangerous agents, empower bad actors, and accelerate the development

of seductive AI applications with harmful effects.

14.1 Summary

Prospects for general, high-level AI services reframe—but do not eliminate—a
range of AI risks. On the positive side, access to increasingly comprehen-
sive AI services (CAIS) can reduce the practical incentives for developing
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potentially problematic AGI agents while providing means for mitigating
their potential dangers. On the negative side, AI services could facilitate the
development of dangerous agents, empower bad actors, and accelerate the
development of seductive AI applications with harmful effects. A further
concern—avoiding perverse agent-like behaviors arising from interactions
among service providers—calls for further study that draws on agent-centric
models. Taking the long view, the CAIS model suggests a technology-agnostic,
relatively path-independent perspective on potential means for managing
SI-level AI risks.

14.2 Prospects for general, high-level AI services reframe AI risks

In a classic model of high-level AI risks, AI development leads to self-
improving agents that gain general capabilities and enormous power relative
to the rest of the world. The AI-services model1 points to a different prospect:
Continued automation of AI R&D2 (viewed as an increasingly-comprehensive
set of development services) leads to a general ability to implement systems
that provide AI services, ultimately scaling to a superintelligent level.
Prospects for comprehensive AI services (CAIS) contrast sharply with classic
expectations that center on AGI agents: The leading risks and remedies differ
in both nature and context.

14.3 CAIS capabilities could mitigate a range of AGI risks

On the positive side, capabilities within the CAIS model can be applied to
mitigate AGI risks. The CAIS model arises naturally from current trends in
AI development and outlines a more accessible path3 to general AI capabil-
ities; as a consequence, CAIS points to a future in which AGI agents have
relatively low marginal instrumental value4 and follow rather than lead the
application of superintelligent-level AI functionality5 to diverse problems.
Accordingly, the CAIS model suggests that high-level agents will (or readily
could) be developed in the context of safer, more tractable AI systems6 that

1. Section 12: AGI agents offer no compelling value

2. Section 10: R&D automation dissociates recursive improvement from AI agency

3. Section 10: R&D automation dissociates recursive improvement from AI agency

4. Section 12: AGI agents offer no compelling value

5. Section 11: Potential AGI-enabling technologies also enable comprehensive
AI services

6. Section 29: The AI-services model reframes the potential roles of AGI agents
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can provide services useful for managing such agents. Predictive models of
human concerns1 are a prominent example of such services; others include
AI-enabled capabilities for AI-systems design,2 analysis,3 monitoring, and
upgrade.4

14.4 CAIS capabilities could facilitate the development of
dangerous AGI agents

Comprehensive AI services necessarily include the service of developing use-
ful AI agents with stable, bounded capabilities, but superintelligent-level CAIS
could also be employed to implement general, autonomous, self-modifying
systems that match the specifications for risky AGI agents. If not properly
directed or constrained—a focus of current AI-safety research—such agents
could pose catastrophic or even existential risks to humanity. The AI-services
model suggests broadening studies of AI safety to explore potential applica-
tions of CAIS-enabled capabilities to risk-mitigating differential technology
development, including AI-supported means for developing safe AGI agents.

14.5 CAIS capabilities could empower bad actors.

AI-service resources per se are neutral in their potential applications, and
human beings can already apply AI services and products to do intentional
harm. Access to advanced AI services could further empower bad actors in
ways both expected and as-yet unimagined; in compensation, advanced AI
services could enable detection and defense against bad actors. Prospective
threats and mitigation strategies call for exploration and study of novel policy
options.

14.6 CAIS capabilities could facilitate disruptive applications

Today’s disruptive AI applications are services that serve some practical pur-
pose. As shown by current developments, however, one person’s service may
be another person’s threat, whether to business models, employment, privacy,
or military security. Increasingly comprehensive and high-level AI services

1. Section 22: Machine learning can develop predictive models of human approval

2. Section 26: Superintelligent-level systems can safely provide
design and planning services

3. Section 23: AI development systems can support effective human guidance

4. Section 16: Aggregated experience and centralized learning
support AI-agent applications
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will continue this trend, again in ways both expected and as-yet imagined.
Mitigation of non-malicious disruption raises political, legal, and economic
questions, because both the disruptors and the disrupted may have conflicting
yet legitimate interests.

14.7 CAIS capabilities could facilitate seductive and addictive
applications

Some disruptive applications provide seductive services that are detrimental,
yet welcomed by their targets. AI systems today are employed to make games
more addictive, to build comfortable filter bubbles, and to optimize message
channels for appeal unconstrained by truth. There will be enormous scope
for high-level AI systems to please the people they harm, yet mitigation of
the individual and societal consequences of unconstrained seductive and
addictive services raises potentially intractable questions at the interface of
values and policy.

14.8 Conditions for avoiding emergent agent-like behaviors call
for further study

Although it is important to distinguish between pools of AI services and classic
conceptions of integrated, opaque, utility-maximizing agents, we should be
alert to the potential for coupled AI services to develop emergent, unintended,
and potentially risky agent-like behaviors. Because there is no bright line
between agents and non-agents, or between rational utility maximization
and reactive behaviors shaped by blind evolution, avoiding risky behaviors
calls for at least two complementary perspectives: both (1) design-oriented
studies that can guide implementation of systems that will provide requisite
degrees of e.g., stability, reliability, and transparency, and (2) agent-oriented
studies support design by exploring the characteristics of systems that could
display emergent, unintended, and potentially risky agent-like behaviors. The
possibility (or likelihood) of humans implementing highly-adaptive agents
that pursue open-ended goals in the world (e.g., money-maximizers) presents
particularly difficult problems.

Further Reading

• Section 3: To understand AI prospects, focus on services, not implementations
• Section 7: Training agents in human-like environments can provide

useful, bounded services
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• Section 10: R&D automation dissociates recursive improvement from AI agency
• Section 12: AGI agents offer no compelling value

15 Development-oriented models align with
deeply-structured AI systems

Unitary, unstructured models of superintelligent systems are natural

objects of theoretical study, but development-oriented models suggest

that advanced AI systems will in practice comprise deeply structured

compositions of differentiated components.

15.1 Summary

AI safety research has focused on unitary, relatively unstructured models of
superintelligent systems. Development-oriented models, however, suggest
that advanced AI systems will in practice comprise or employ structured
systems of task-oriented components. Prospects for heterogeneous, deeply
structured systems are best understood by considering development processes
in which structure results from composing components, not from partitioning
a hypothetical unitary functionality. A focus on development processes that
lead to structured products links AI safety to ongoing AI research practice
and suggests a range of topics for further inquiry.

15.2 AI safety research has often focused on unstructured
rational-agent models

Research in AI safety has been motivated by prospects for recursive improve-
ment that enables the rapid development of systems with general, superhu-
man problem-solving capabilities. Research working within this paradigm
has centered not on the process of recursive improvement, but on its poten-
tial products, and these products have typically been modeled as discrete,
relatively unstructured, general-purpose AI systems.

15.3 Structured systems are products of structured development

In an alternative, potentially complementary model of high-level AI, the prod-
ucts of recursive improvement are deeply structured, task-focused systems
that collectively deliver a comprehensive range of superintelligent task capa-
bilities, yet need not be (or become) discrete entities that individually span a
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full range of capabilities. This model has been criticized as potentially incur-
ring high development costs, hence prospects for deploying differentiated (but
not necessarily narrow) AI systems with a collectively comprehensive range
of task capabilities may best be approached through an explicit consideration
of potential AI research and development processes.

15.4 AI development naturally produces structured AI systems

Today, the AI research community is developing a growing range of rela-
tively narrow, strongly differentiated AI systems and composing them to
build systems that embrace broader domains of competence. A system that
requires, for example, both vision and planning will contain vision and plan-
ning components; a system that interprets voice input will contain interacting
yet distinct speech recognition and semantic interpretation components. A
self-driving car with a conversational interface would include components
with all of the above functionalities, and more. The principle of composing
differentiated competencies to implement broader task-performance naturally
generalizes to potential systems that would perform high-order tasks such as
the human-directed design and management of space transportation systems,
or AI research and development.

15.5 Structure arises from composing components, not
partitioning unitary systems

If one begins with unitary systems as a reference model, the task of implement-
ing structured, broadly competent AI systems may appear to be a problem
of imposing structure by functional decomposition, rather than one of building
structures by composing functional components. In other words, taking a unitary-
system model as a reference model focuses attention on how a hypothetical
system with unitary, universal competence might be divided into parts. While
this framing may be useful in conceptual design, it can easily lead to confusion
regarding the nature of structured AI system development and products.

15.6 A development-oriented approach to deeply structured
systems suggests a broad range of topics for further inquiry

A focus on AI development links AI safety studies to current R&D practice. In
particular, the prospective ability to deliver deeply-structured, task-focused
AI systems offers rich affordances for the study and potential implementation
of safe superintelligent systems.
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The joint consideration of structured AI development and products invites
inquiry into a range of topics, including:

• Abstract and concrete models of structured AI systems
• Abstract and concrete models of AI R&D automation
• Incremental R&D automation approaching the recursive regime
• Conditions for problematic emergent behaviors in structured systems
• Applications of end-to-end learning in structured systems
• Unitary models as guides to potential risks in composite systems
• Distinct functionalities and deep component integration
• Safety guidelines for structured AI systems development
• Potential incentives to pursue alternative paths
• Potential incentives to violate safety guidelines
• Implications of safety-relevant learning during AI development
• Applications of task-focused AI capabilities to AI safety problems
• Applications of superintelligent-level machine learning to predicting

human approval

Further Reading

• Section 5: Rational-agent models place intelligence in an
implicitly anthropomorphic frame

• Section 10: R&D automation dissociates recursive improvement from AI agency
• Section 12: AGI agents offer no compelling value
• Section 15: Development-oriented models align with deeply-structured AI sys-

tems
• Section 39: Tiling task-space with AI services can provide general AI capabilities
• Section 35: Predictable aspects of future knowledge can inform AI safety strategies

16 Aggregated experience and centralized learning
support AI-agent applications

Centralized learning based on aggregated experience has strong advan-

tages over local learning based on individual experience, and will likely

dominate the development of advanced AI-agent applications.

16.1 Summary

Since Turing, discussions of advanced AI have tacitly assumed that agents will
learn and act as individuals; naïve scaling to multi-agent systems retains a
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human-like model centering on individual experience and learning. The de-
velopment of self-driving vehicles, however, illustrates a sharply contrasting
model in which aggregation of information across N agents (potentially thou-
sands to millions) speeds the acquisition of experience by a factor of N, while
centralized, large-scale resources are applied to training, and amortization
reduces a range of per-agent costs by a factor of 1/N. In addition to advan-
tages in speed and amortization, centralized learning enables pre-release
testing for routinely encountered errors and ongoing updates in response
to rarely-encountered events. The strong, generic advantages of aggregated
experience and centralized learning have implications for our understanding
of prospective AI-agent applications.

16.2 Discussions often assume learning centered on individual
agents

Advanced AI agents are often modeled as individual machines that learn
tasks in an environment, perhaps with human supervision, along the lines
suggested by Fig. 1. In human experience, human beings have been the sole
intelligent agents in the world, a circumstance that powerfully reinforces our
habit of identifying experience and learning with individual agents.

Figure 6: Individual agents capable of open-ended learning would
plan, act, and adapt their actions to a particular task environment,
while building on individual experience to learn better methods for
planning, acting, and adaptation (generic task learning).

16.3 Naïve scaling to multi-agent systems replicates individual
agents

Naïve scaling of the individual-agent model to multiple agents does not
fundamentally alter this picture (Fig 2). One can extend the environment of
each agent to include other AI agents while retaining a human-like model of
learning: Other agents play a role like that of other human beings.
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Figure 7: In a naïve scale-up of the scheme outlined in Fig. 1, N
agents would plan, act, and adapt their actions to a range of similar
task environments while learning from experience independently; both
costs and benefits scale as N, and the time required to learn tasks
remains unchanged.

16.4 Self-driving vehicles illustrate the power of aggregating
experience

Self-driving cars are agents that follow a quite different model: They do not
learn as individuals, but instead deliver improved competencies through a
centralized R&D process that draws on the operational experience of many
vehicles. Tesla today produces cars with self-driving hardware at a rate of
approximately 100,000 per year, steadily accelerating the accumulation of
driving experience (termed “fleet learning”). Vehicle-agents that learned only
from individual experience could not compete in performance or safety.

16.5 Efficiently organized machine learning contrasts sharply
with human learning

Machine learning contrasts sharply with human learning in its potential for
efficiently aggregating experience, amortizing learning, applying population-
based exploration (Conti et al. 2017), and reproducing and distributing com-
petencies.

Experience can be aggregated.
Among human beings, the ability to share detailed experiences is
limited, and learning from others competes with learning from
experience. In machine learning, by contrast, experience can be
aggregated, and learning from aggregated experience need not
compete with the acquisition of further experience.
Learning can be accelerated and amortized.
Among human beings, applying a thousand brains to learning
does not reduce individual learning time or cost. In machine learn-
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ing, by contrast, applying increasing computational capacity can
reduce learning time, and computational costs can be amortized
across an indefinitely large number of current and future systems.
Competencies can be reproduced.
Among human beings, training each additional individual is costly
because competencies cannot be directly reproduced (hence learn-
ing elementary mathematics absorbs millions of person-years per
year). In machine learning, learned competencies can be repro-
duced quickly at the cost of a software download.

Figure 8: In large-scale agent applications, N agents (e.g. a thousand
or a million) would independently plan, act, and adapt in a range
of similar task environments, while aggregation of the resulting task
experience enables data-rich learning supported by centralized de-
velopment resources. Centralized learning enables upgraded agent
software to be tested before release.

16.6 Aggregated learning speeds development and amortizes
costs

With learning aggregated from N agents, the time required to gain a given
quantity of experience scales as 1/N, potentially accelerating development of
competencies. Further, the computation costs of training can be amortized
over N agents, yielding a per-agent cost that scales as 1/N.

If common situations each require human advice when first encountered,
the burden of supervising an independent agent might be intolerable, yet
acceptably small when employing an agent trained with ongoing experience
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aggregated from a large-N deployment. Similarly, if the causes of novel errors
can be promptly corrected, the per-agent probability of encountering a given
error will be bounded by 1/N.

16.7 The advantages of aggregated, amortized learning have
implications for prospective AI-agent applications

The advantages of richer data sets, faster learning, and amortization of the
costs of training and supervision all strongly favor development approaches
that employ centralized, aggregated learning across deployments of agents
that share similar tasks. These considerations highlight the importance of
development-oriented models in understanding prospects for the emergence
of broad-spectrum AI-agent applications.

Further Reading

• Section 5: Rational-agent models place intelligence in an
implicitly anthropomorphic frame

• Section 7: Training agents in human-like environments can provide
useful, bounded services

• Section 18: Reinforcement learning systems are not equivalent
to reward-seeking agents

• Section 23: AI development systems can support effective human guidance
• Section 36: Desiderata and directions for interim AI safety guidelines

17 End-to-end reinforcement learning is compatible
with the AI-services model

End-to-end training and reinforcement learning fit naturally within

integrated AI-service architectures that exploit differentiated AI compo-

nents.

17.1 Summary

Advances in deep reinforcement learning and end-to-end training have raised
questions regarding the likely nature of advanced AI systems. Does progress
in deep RL naturally lead to undifferentiated, black-box AI systems with broad
capabilities? Several considerations suggest otherwise, that RL techniques will
instead provide task-focused competencies to heterogeneous systems. General
AI services must by definition encompass broad capabilities, performing not
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a single task trained end-to-end, but many tasks that serve many ends and
are trained accordingly. Even within relatively narrow tasks, we typically find
a range of distinct subtasks that are best learned in depth to provide robust
functionality applicable in a wider range of contexts. We can expect to see
RL applied to the development of focused systems (whether base-level or
managerial) with functionality that reflects the natural diversity and structure
of tasks.

17.2 RL and end-to-end training tend to produce black-box
systems

Methods that employ end-to-end training and deep reinforcement learning
(here termed simply “deep RL”) have produced startling advances in areas
that range from game play (Mnih et al. 2015) to locomotion (Heess et al. 2017)
to neural-network design (Zoph and Le 2016). In deep RL, what are effectively
black-box systems learn to perform challenging tasks directly from reward
signals, bypassing standard development methods. Advances in deep RL
have opened fruitful directions for current research, but also raise questions
regarding the likely nature (and safety) of advanced AI systems with more
general competencies.

17.3 RL and end-to-end training are powerful, yet bounded in
scope

Complex products (both hardware and software) have generally been built of
components with differentiated competencies. End-to-end training challenges
this model: Although systems are commonly differentiated in some respects
(e.g., convolutional networks for visual processing, recurrent neural networks
for sequential processing, external memories for long-term representation),
these system components and their learned content do not align with distinct
tasks at an application level. Functional competencies are (at least from
an external perspective) undifferentiated, a confronting us with black-box
systems.

Will end-to-end training of black-box systems scale to the development of
AI systems with extremely broad capabilities? If so—and if such methods were
to be both efficient by metrics of development cost and effective by metrics
of product quality—then advanced AI systems might be expected to lack the
engineering affordances provided by differentiated systems. In particular,
component functionalities might not be identifiable, separable, and subject to
intensive training and testing.
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There is, however, reason to expect that broad AI systems will comprise
patterns of competencies that reflect (and expose1) the natural structure of
complex tasks.2 The reasons include both constraints (the nature of training
and bounded scope of transfer learning) and opportunities (the greater robust-
ness and generalization capabilities of systems that exploit robust and general
components).

17.4 General capabilities comprise many tasks and end-to-end
relationships

What would it even mean to apply end-to-end training to a system with
truly general capabilities? Consider a hypothetical system intended to per-
form a comprehensive range of diverse tasks, including conversation, vehicle
guidance, AI R&D,3 and much more. What input information, internal archi-
tecture, output modalities, and objective functions would ensure that each
task is trained efficiently and well? Given the challenges of transfer learning
(Teh et al. 2017) even across a range of similar games, why would one expect
to find a compelling advantage in learning a comprehensive range of radi-
cally different tasks through end-to-end training of a single, undifferentiated
system?

Diverse tasks encompass many end-to-end relationships. A general system
might provide services that include witty conversation and skillful driving,
but it is implausible that these services could best be developed by applying
deep RL to a single system. Training a general system to exploit differentiated
resources (providing knowledge of vehicle dynamics, scene interpretation,
predictions of human road behavior; linked yet distinct resources for convers-
ing with passengers about travel and philosophy) seems more promising than
attempting to treat all these tasks as one.

17.5 Broad capabilities are best built by composing well-focused
competencies

Systems that draw on (and perhaps adapt) distinct subtask competencies
will often support more robust and general performance. For example, to
interact with human beings well calls for a model of many aspects of human

1. Section 9: Opaque algorithms are compatible with
functional transparency and control

2. Section 38: Broadly-capable systems coordinate narrower systems

3. Section 10: R&D automation dissociates recursive improvement from AI agency
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concerns, capabilities, intentions, and responses to situations—aspects that are
unlikely to be thoroughly explored through deep RL within the scope of any
particular task. For example, a model of an open task environment, such as a
road, may fail to model child ball-chasing events that are rare on roads, but
common on playgrounds. Similarly, a system intended to explore theoretical
physics might struggle to discover mathematical principles that might better
be provided through access to a system with strong, specifically mathematical
competencies. The use of focused, broadly-applicable competencies in diverse
contexts constitutes a powerful form of transfer learning.

Narrow components can support—and strengthen—broad capabilities,
and are best learned in depth and with cross-task generality, not within the
confines of a particular application. Note that components can be distinct, yet
deeply integrated1 at an algorithmic and representational level.

17.6 Deep RL can contribute to R&D automation within the CAIS
model of general AI

Reinforcement learning fits naturally with the R&D automation model of
comprehensive AI services.2 Deep RL has already been applied to develop
state-of-the art neural networks (Zoph and Le 2016), including scalable modular
systems (Zoph et al. 2017), and deep RL has been applied to optimizing deep
RL systems. Increasing automation of AI R&D will facilitate the development
of task-oriented systems of all kinds, and will naturally result in deeply-
structured systems.3

In considering RL in the context of AI control and safety, in is important to
keep in mind that RL systems are not utility-maximizing agents,4 that learning
is separable from performance,5 that human oversight need not impede rapid
progress,6 and that component-level algorithmic opacity is compatible with

1. Section 9: Opaque algorithms are compatible with
functional transparency and control

2. Section 12: AGI agents offer no compelling value

3. Section 15: Development-oriented models align with deeply-structured AI systems

4. Section 18: Reinforcement learning systems are not equivalent
to reward-seeking agents

5. Section 2: Standard definitions of “superintelligence” conflate
learning with competence

6. Section 24: Human oversight need not impede fast, recursive
AI technology improvement
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system-level functional transparency.1 Because efficiency, quality, reliability,
and safety all favor the development of functionally differentiated AI services,
powerful RL techniques are best regarded as tools for implementing and
improving AI services, not as harbingers of omnicompetent black-box AI.

Further Reading

• Section 7: Training agents in human-like environments can provide
useful, bounded services

• Section 9: Opaque algorithms are compatible with
functional transparency and control

• Section 12: AGI agents offer no compelling value
• Section 18: Reinforcement learning systems are not equivalent

to reward-seeking agents
• Section 38: Broadly-capable systems coordinate narrower systems

18 Reinforcement learning systems are not equivalent
to reward-seeking agents

RL systems are (sometimes) used to train agents, but are not themselves

agents that seek utility-like RL rewards.

18.1 Summary

Reward-seeking reinforcement-learning agents can in some instances serve as
models of utility-maximizing, self-modifying agents, but in current practice,
RL systems are typically distinct from the agents they produce, and do not
always employ utility-like RL rewards. In multi-task RL systems, for example,
RL “rewards” serve not as sources of value to agents, but as signals that guide
training, and unlike utility functions, RL “rewards” in these systems are
neither additive nor commensurate. RL systems per se are not reward-seekers
(instead, they provide rewards), but are instead running instances of algorithms
that can be seen as evolving in competition with others, with implementations
subject to variation and selection by developers. Thus, in current RL practice,
developers, RL systems, and agents have distinct purposes and roles.

1. Section 9: Opaque algorithms are compatible with
functional transparency and control
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18.2 Reinforcement learning systems differ sharply from
utility-directed agents

Current AI safety discussions sometimes treat RL systems as agents that seek
to maximize reward, and regard RL “reward” as analogous to a utility function.
Current RL practice, however, diverges sharply from this model: RL systems
comprise often-complex training mechanisms that are fundamentally distinct
from the agents they produce, and RL rewards are not equivalent to utility
functions.

18.3 RL systems are neither trained agents nor RL-system
developers

In current practice, RL systems and task-performing agents often do not
behave as unitary “RL agents”; instead, trained agents are products of RL
systems, while RL systems are products of a development process. Each of
these levels (development processes, RL systems, and task-performing agents)
is distinct in its implementation and implicit goals.

18.4 RL systems do not seek RL rewards, and need not produce
agents

RL-system actions include running agents in environments, recording results,
and running RL algorithms to generate improved agent-controllers. These
RL-system actions are not agent-actions, and rewards to agents are not rewards
to RL systems. Running agents that collect rewards is a training cost, not a
source of reward to the training system itself.

Note that the products of RL systems need not be agents: For example, re-
searchers have applied RL systems to train mechanisms for attention in vision
networks (Xu et al. 2015), to direct memory access in memory-augmented
RNNs (Gülçehre, Chandar, and Bengio 2017), and (in meta-learning) to de-
velop RL algorithms in RL systems (Duan et al. 2016; J. X. Wang et al. 2016).
RL systems have also been used to design architectures for convolutional neu-
ral networks (Baker et al. 2016; Zoph and Le 2016) and LSTM-like recurrent
cells for natural-language tasks (Zoph and Le 2016).

18.5 RL rewards are not, in general, treated as increments in
utility

“Reward” must not be confused with utility. In DeepMind’s work on multi-
task learning, for example, agents are trained to play multiple Atari games
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with incommensurate reward-scores. Researchers have found that these het-
erogeneous “rewards” cannot be scaled and summed over tasks as if they
were measures of utility, but must instead be adaptively adjusted to provide
learning signals that are effective across different games and stages of training
[ref]. RL rewards are sources of information and direction for RL systems,
but are not sources of value for agents. Researchers often employ “reward
shaping” to direct RL agents toward a goal, but the rewards used shape the
agent’s behavior are conceptually distinct from the value of achieving the
goal.1

18.6 Experience aggregation blurs the concept of individual
reward

Modern RL systems typically aggregate experience2 across multiple instances
of agents that run in parallel in different environments. An agent-instance does
not learn from “its own” experience, and aggregated experience may include
off-policy actions that improve learning, yet impair reward-maximization for
any given instance.

18.7 RL algorithms implicitly compete for approval

RL algorithms have improved over time, not in response to RL rewards, but
through research and development. If we adopt an agent-like perspective,
RL algorithms can be viewed as competing in an evolutionary process where
success or failure (being retained, modified, discarded, or published) depends
on developers’ approval (not “reward”), which will consider not only current
performance, but also assessed novelty and promise.

18.8 Distinctions between system levels facilitate transparency
and control

The patterns and distinctions described above (developer vs. learning system
vs. agent) are not specific to RL, and from a development-oriented perspec-
tive, they seem generic. Although we can sometimes benefit from dropping
these distinctions and exploring models of agent-like RL systems that seek

1. For example, an RL system can learn a predictive model of a human observer’s approval
at the level of actions, learning to perform difficult tasks without a specified goal or reward:
see Christiano et al. (2017).

2. Section 16: Aggregated experience and centralized learning
support AI-agent applications
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utility-like rewards, current and future RL systems need not conform to those
models. AI development practice suggests that we also consider how AI
components and systems are architected, trained, combined, and applied. A
development-oriented perspective1 focuses attention on structured processes,
structured architectures, and potential points of control that may prove useful
in developing safe applications of advanced AI technologies.

18.9 RL-driven systems remain potentially dangerous

It should go without saying that RL algorithms could serve as engines driving
perverse behavior on a large scale. For an unpleasantly realistic example,
consider the potential consequences of giving an RL-driven system read/write
access to the internet—including access to contemporaneous AI services—with
the objective of maximizing the net flow of money into designated accounts.
In this scenario, consider how the value of a short position could be increased
by manipulating news or crashing a power grid. Distinctions between system
levels offer affordances for control, yet levels can be collapsed, and having
affordances for control in itself precludes neither accidents nor abuse.

Further Reading

• Section 7: Training agents in human-like environments can provide
useful, bounded services

• Section 10: R&D automation dissociates recursive improvement from AI agency
• Section 16: Aggregated experience and centralized learning

support AI-agent applications
• Section 35: Predictable aspects of future knowledge can inform AI safety strategies
• Section 36: Desiderata and directions for interim AI safety guidelines
• Section 40: Could 1 PFLOP/s systems exceed the basic

functional capacity of the human brain?

19 The orthogonality thesis undercuts the generality
of instrumental convergence

If any level of intelligence can be applied to any goal, then

superintelligent-level systems can pursue goals for which the

pursuit of the classic instrumentally-convergent subgoals would offer no

value.

1. Section 15: Development-oriented models align with deeply-structured AI systems
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19.1 Summary

Bostrom (2014) presents carefully qualified arguments regarding the “or-
thogonality thesis” and “instrumental convergence”, but the scope of their
implications has sometimes been misconstrued. The orthogonality thesis
proposes that any level of intelligence can be applied to any goal (more or
less), and the principle of instrumental convergence holds that a wide range of
goals can be served by the pursuit of subgoals that include self preservation,
cognitive enhancement, and resource acquisition. This range of goals, though
wide, is nonetheless limited to goals of indefinite scope and duration. The
AI-services model suggests that essentially all practical tasks are (or can be)
directly and naturally bounded in scope and duration, while the orthogonal-
ity thesis suggests that superintelligent-level capabilities can be applied to
such tasks. At a broad, systemic level, tropisms toward general instrumental
subgoals seem universal, but such tropisms do not imply that a diffuse system
has the characteristics of a willful superintelligent agent.

19.2 The thesis: Any level of intelligence can be applied to any
goal (more or less)

The orthogonality thesis (Bostrom 2014, p.107) proposes that intelligence and
final goals are orthogonal: “[. . .] more or less any level of intelligence can be
combined with more or less any final goal.”

A natural consequence of the orthogonality thesis is that intelligence of any
level can be applied to goals that correspond to tasks of bounded scope and
duration.

19.3 A wide range of goals will engender convergent
instrumental subgoals

As Marvin Minsky noted in a conversation ca. 1990, a top-level goal of narrow
scope (e.g., playing the best possible game of chess) can be served by a subgoal
of enormous scope (e.g., converting all accessible resources into chess-playing
machinery). The instrumental convergence (IC) thesis (Bostrom 2014, p.109)
generalizes this principle; it describes instrumental values that engender
subgoals that, if accomplished,

[. . .] would increase the chances of the agent’s goal being realized for a
wide range of final goals and a wide range of situations, implying that
these instrumental values [or (sub)goals] are likely to be pursued by a
broad spectrum of situated intelligent agents.
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The explicitly considered IC subgoals are:

• Self preservation (to pursue long-term goals, an agent must continue to
exist)

• Goal-content integrity (to pursue long-term goals, an agent must main-
tain them)

• Cognitive enhancement (gaining intelligence would expand an agent’s
capabilities)

• Technological perfection (developing better technologies would expand
an agent’s capabilities)

• Resource acquisition (controlling more resources would expand an
agent’s capabilities)

Recognizing the broad scope of IC subgoals provides insight into potential be-
haviors of a system that pursues goals with a “superintelligent will” (Bostrom
2014, p.105).

19.4 Not all goals engender IC subgoals

As formulated, the IC thesis applies to “a wide range [implicitly, a limited
range] of final goals”, and the subsequent discussion (Bostrom 2014, p.109)
suggests a key condition, that “an agent’s final goals concern the future”.
This condition is significant: Google’s neural machine translation system, for
example, has no goal beyond translating a given sentence, and the scope of
this goal is independent of the level of intelligence that might be applied to
achieve it.

In performing tasks of bounded scope and duration, the pursuit of longer-
term IC subgoals would offer no net benefit, and indeed, would waste re-
sources. Optimization pressure on task-performing systems can be applied
to suppress not only wasteful, off-task actions, but off-task modeling and
planning.1

19.5 Not all intelligent systems are goal-seeking agents in the
relevant sense

As formulated above, the IC thesis applies to “situated agents”, yet in many
instances intelligent systems that perform tasks are neither agents nor situated
in any conventional sense: Consider systems that prove theorems, translate

1. Section 8: Strong optimization can strongly constrain AI capabilities, behavior, and effects
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books, or perform a series of design optimizations. Further, agents within
the scope of the IC thesis are typically modeled as rational, utility-directed,
and concerned with goals of broad scope, yet even situated agents need not
display these characteristics (consider System 1 decision-making in humans).

19.6 Comprehensive services can be implemented by systems
with bounded goals

The AI-services model invites a functional analysis of service development and
delivery, and that analysis suggests that practical tasks in the CAIS model are
readily or naturally bounded in scope and duration. For example, the task of
providing a service is distinct from the task of developing a system to provide that
service, and tasks of both kinds must be completed without undue cost or delay.
Metalevel tasks such as consulting users to identify application-level tasks
and preferences, selecting and configuring systems to provide desired services,
supplying necessary resources, monitoring service quality, aggregating data
across tasks, and upgrading service-providers are likewise bounded in scope
and duration. This brief sketch outlines a structure of generic, bounded
tasks that could, by the orthogonality thesis, be implemented by systems
that operate at a superintelligent level. It is difficult to identify bounded (vs.
explicitly world-optimizing) human goals that could more readily be served
by other means.

19.7 IC goals naturally arise as tropisms and as intended services

The IC thesis identifies goals that, although though not of value in every
context, are still of value at a general, systemic level. The IC goals arise
naturally in an AI-services model, not as the result of an agent planning to
manipulate world-outcomes in order to optimize an over-arching goal, but as
system-level tropisms that emerge from local functional incentives:

• Self preservation: Typical service-providing systems act in ways that
avoid self-destruction: Self-driving cars are an example, though missiles
are an exception. AI systems, like other software, can best avoid being
scrapped by providing valuable services while not disrupting their own
operation.

• Goal-content integrity: For AI systems, as with other software, func-
tional (implicitly, “goal”) integrity is typically critical. Security services
that protect integrity are substantially orthogonal to functional services,
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however, and security services enable software upgrade and replacement
rather than simply preserving what they protect.

• Cognitive enhancement: At a global level, AI-supported progress in AI
technologies can enable the implementation of systems with enhanced
levels of intelligence, but most AI R&D tasks are more-or-less orthogonal
to application-level tasks, and are bounded in scope and duration.

• Technological perfection: At a global level, competition drives improve-
ments in both hardware and software technologies; on inspection, one
finds that this vast, multi-faceted pursuit resolves into a host of loosely-
coupled R&D tasks that are bounded in scope and duration.

• Resource acquisition: AI systems typically acquire resources by provid-
ing value through competitive services (or disservices such as theft or
fraud).

All these goals are pursued today by entities in the global economy, a proto-
typical diffuse intelligent system.

19.8 Systems with tropisms are not equivalent to agents with
“will”

The aggregate results of AI-enabled processes in society would tend to advance
IC goals even in the absence of distinct AI agents that meet the conditions
of the IC thesis. To regard systemic tropisms as manifestations of a “super-
intelligent will”, however, would be much like attributing a “will” to a global
ecosystem or economy—a potentially useful perspective that does not reflect
an equivalence.

The analogy between tropisms and will invites a “motte and bailey argu-
ment” that wrongly attributes the properties of willful rational agents to all
systems in which strong aggregate capabilities provide wide-ranging services.
Similarly, to argue that a diffuse system would itself undertake actions to
become a willful agent in order to pursue IC subgoals is essentially circular.

Further Reading

• Section 5: Rational-agent models place intelligence in an
implicitly anthropomorphic frame

• Section 8: Strong optimization can strongly constrain AI capabilities, behavior,
and effects

• Section 12: AGI agents offer no compelling value
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• Section 28: Automating biomedical R&D does not require defining human wel-
fare

• Section 38: Broadly-capable systems coordinate narrower systems

20 Collusion among superintelligent oracles can
readily be avoided

Because perverse collusion among AI systems would be fragile and read-

ily avoided, there is no obstacle to applying diverse, high-level AI re-

sources to problems of AI safety.

20.1 Summary

The potential for successful collusion among actors decreases as their number
increases and as their capabilities, knowledge, situations, and roles become
more diverse. In the context of AI systems, these conditions are easy to im-
plement and are often naturally preferred for practical reasons. Accordingly,
arguments that sets of high-level AI systems will naturally or inevitably col-
lude are ill-founded, and diverse superintelligent-level question-answering
systems (“oracles”) can be employed to improve, rather than degrade, safety.

20.2 Trustworthiness can be an emergent property

Prospects for solving AI-safety problems would be greatly improved if we
could safely apply SI-level question-answering capabilities to solving those
problems. A familiar objection dismisses this potentially powerful approach as
unsafe in itself, arguing that, absent solutions to difficult problems, individual
SI-level systems would be untrustworthy, and that attempts to establish checks
and balances among multiple systems (e.g., through SI-level evaluation of
proposed answers to queries) would be thwarted by collusive cooperation.

Identifying robust methods for ensuring non-collusion among SI query-
answering systems would overcome this objection, enabling the construction
of trustworthy composite oracles and inviting the exploration of SI-enabled
strategies for managing potentially untrusted SI systems. The present dis-
cussion argues that the robust non-emergence of deceptive collusion among SI
query-answering systems can be ensured by structuring a set of systems with
diverse capabilities, knowledge, situations, and roles.

Given the problem framing, the discussion here will take as non-
problematic the ability to develop systems that can respond to queries with
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SI-level competence, and (as a consequence of the nature of digital systems)
will assume the ability to constrain information inputs to SI systems during
their development and use.

In the problematic case, SI query-answering systems might provide decep-
tive answers in pursuit of emergent, potentially undesirable objectives. The
aim here is to identify principles for architecting composite systems that will
act as non-deceptive oracles, while treating their components as actors with
potential incentives for deceptive collusion.

20.3 A range of conditions may facilitate or disrupt collusion

Potential problems of deceptive collusion can be addressed by architecting
systems that make collusion difficult or impossible. We can identify a range
of relevant conditions:

Conditions that tend to facilitate collusion among actors

A1) Small numbers of actors (the required scope of collusion is small)
A2) Insensitivity to defectors (partial collusion is sufficient)
A3) Similarity among actors (e.g., shared histories and objectives)
A4) Iterated decision processes with universally observable actions
A5) Common knowledge of the above circumstances

Contrasting conditions that tend to disrupt collusion among actors

B1) Large numbers of actors (the required scope of collusion is large)
B2) Sensitivity to defectors (collusion fails unless it is complete)
B3) Diversity among actors (e.g., different histories, adversarial objectives)
B4) Single-move decision processes in which most actions are unobservable
B5) Lack of common knowledge of many strategically-relevant circumstances

The implementation choices implied by conditions (A1–A5) are neither neces-
sary nor desirable, while as suggested by (C1–C5) below, the choices implied
by conditions (B1–B5) are both practical and well-motivated.

Natural architectures for problem-solving systems

C1) To improve the quality of answers, it is natural to implement multiple,
diverse (and implicitly competing) systems to propose alternatives.

C2) To identify low-quality or misleading answers, it is natural to employ
diverse critics, any one of which could disrupt deceptive collusion.
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C3) Systems of diverse, competing proposers and critics naturally implement
both independent and adversarial objectives.

C4) It is natural to apply fixed (hence memory-free) system instantiations to
multiple problems, incidentally yielding a series of history-blind, single-
move decisions.

C5) It is natural to provide differentiated, task-relevant information to systems
solving different problems, typically omitting knowledge of general
circumstances.

Points (C1–C5) suggest that implementing systems that are resistant to the
emergence of deceptive collusion aligns with the general strategy of employing
ensembles of diverse, stable, task-directed system components to obtain and
assess answers to queries. In appropriate architectures, the use of greater
numbers of potentially untrustworthy SI-level components can improve rather
than degrade safety.1

20.4 Collusion is fragile and easily disrupted

In light of the above considerations, it seems both possible and practical
to establish conditions that would preclude deceptive collusion among di-
verse, task-oriented, SI-level query-answering systems, thereby addressing a
key problem in safely applying oracle-class superintelligent capabilities (see
Bostrom [2014, p.145]). Prospects for obtaining trustworthy answers from sets
of individually untrusted SI systems call for deeper exploration of AI safety
strategies premised on reliable access to superintelligent problem-solving
capabilities. Capabilities of particular interest include the ability run and
evaluate the results of superintelligent-level red-team/blue-team competitions
relevant to questions of global strategic stability. Christiano (2015a) considers
collusion and a range of related topics; I agree with his gently-stated view
that “[. . .] the implicit argument for the robustness of collusion makes a lot of

1. In a familiar class of worst-case models, systems with general superintelligence would
infer extensive knowledge about the world from minimal information, and would choose
(if possible) to pursue potentially dangerous goals by manipulating the external environ-
ment, e.g., through deceptive answers to queries. In this model, (all?) superintelligent
systems, even if almost isolated, would infer the existence of others like themselves, and
(all?) would employ a decision theory that induces them to collude (in a coordinated
way?) to pursue shared objectives. Even if we grant the initial worst-case assumptions, the
argument presented above indicates that systems with these extraordinary capabilities
would correctly infer the existence of superintelligent-level systems unlike themselves
(systems with diverse and specialized capabilities, knowledge, and interactions, playing
roles that include adversarial judges and competitors), and would correctly recognize that
collusive deception is risky or infeasible.
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implicit assumptions. If I saw an explicit argument I might be able to assess
its explicit assumptions, but for now we don’t have one.”

Further Reading

• Section 8: Strong optimization can strongly constrain AI capabilities, behavior,
and effects

• Section 12: AGI agents offer no compelling value
• Section 21: Broad world knowledge can support safe task performance
• Section 19: The orthogonality thesis undercuts the generality

of instrumental convergence
• Section 23: AI development systems can support effective human guidance
• Section 24: Human oversight need not impede fast, recursive

AI technology improvement

21 Broad world knowledge can support safe task
performance

Broad, deep knowledge about the world is compatible with safe, stable,

high-level task performance, including applications that support AI

safety.

21.1 Summary

Is strongly-bounded world knowledge necessary to ensure strongly-bounded
AI behavior? Language translation shows otherwise: Machine translation
(MT) systems are trained on general text corpora, and would ideally develop
and apply extensive knowledge about the world, yet MT systems perform a
well-bounded task, serving as functions of type T :: string→ string. Broad
knowledge and linguistic competencies can support (rather than undermine)
AI safety by enabling systems to learn predictive models of human approval
from large corpora.

21.2 Bounding task focus does not require bounding world
knowledge

Placing tight bounds on knowledge could be used to restrict AI competencies,
and dividing broad AI tasks among components with restricted competencies
could help to ensure AI safety (as discussed in Drexler [2015]), yet some
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tasks may require broad, integrated knowledge of the human world. General-
purpose machine translation (MT) exemplifies a task that calls for integrated
knowledge of indefinite scope, but also illustrates another, distinct mechanism
for restricting competencies: Task-focused training (also discussed in Drexler
[2015]).

21.3 Extensive world knowledge can improve (e.g.) translation

Fully-general human-quality machine translation would require understand-
ing diverse domains, which in turn would require knowledge pertaining to
human motivations, cultural references, sports, technical subjects, and much
more. As MT improves, there will be strong incentives to incorporate broader
and deeper world knowledge.

21.4 Current MT systems are trained on open-ended text corpora

Current neural machine translation (NMT) systems gain what is, in effect,
knowledge of limited kinds yet indefinite scope through training on large,
general text corpora. Google’s GNMT architecture has been trained on tens of
millions of sentence pairs for experiments and on Google-internal production
datasets for on-line application; the resulting trained systems established a
new state-of-the-art, approaching the quality of “average human translators”
(Wu et al. 2016).

Surprisingly, Google’s NMT architecture has been successfully trained, with
little modification, to perform bidirectional translation for 12 language pairs
(Johnson et al. 2016).

Although the system used no more parameters than the single-pair model
(278 million parameters), the multilingual model achieves a performance
“reasonably close” to the best single-pair models. Subsequent work (below)
developed efficient yet greatly expanded multilingual models that improve on
previous single-model performance.

21.5 Current systems develop language-independent
representations of meaning

NMT systems encode text into intermediate representations that are decoded
into a target language. In Google’s multilingual systems, one can compare
intermediate representations generated in translating sentences from multiple
source languages to multiple targets. Researchers find that, for a given set
of equivalent sentences (paired with multiple target languages), encodings
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cluster closely in the space of representations, while these clusters are well-
separated from similar clusters that represent sets of equivalent sentences with
a different meaning. The natural interpretation of this pattern is that sentence-
encodings represent meaning in a form that is substantially independent of
any particular language.

(It may prove fruitful to train similar NMT models on sets of pairs of equiva-
lent sentences while providing an auxiliary loss function that pushes represen-
tations within clusters toward closer alignment. One would expect training
methods with this auxiliary objective to produce higher-quality language-
independent representations of sentence meaning, potentially providing an
improved basis for learning abstract relationships.)

21.6 Scalable MT approaches could potentially exploit extensive
world knowledge

NMT systems can represent linguistic knowledge in sets of specialized “ex-
perts”, and Google’s recently described “Sparsely-Gated Mixture-of-Experts”
(MoE) approach (Shazeer et al. 2017) employs sets of sets of experts, in effect
treating sets of experts as higher-order experts. Human experience suggests
that hierarchical organizations of experts could in principle (with suitable
architectures and training methods) learn and apply knowledge that extends
beyond vocabulary, grammar, and idiom to history, molecular biology, and
mathematics.

Notably, Google’s MoE system, in which “different experts tend to become
highly specialized based on syntax and semantics” has enabled efficient train-
ing and application of “outrageously large neural networks” that achieve
“greater than 1000× improvements in model capacity [137 billion parameters]
with only minor losses in computational efficiency on modern GPU clusters”.
(There is reason to think that these systems exceed the computational capacity
of the human brain.1)

21.7 Specialized modules can be trained on diverse, overlapping
domains

As suggested by the MoE approach in NMT, domain-specialized expertise can
be exploited without seeking to establish clear domain boundaries that might
support safety mechanisms. For example, it is natural to expect that efficient

1. Section 40: Could 1 PFLOP/s systems exceed the basic
functional capacity of the human brain?
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and effective training will focus on the learning the concepts and language of
chemistry (for training some modules), of history (for training others), and of
mathematics (for yet others). It is also natural to expect that training modules
for expertise in translating chemistry textbooks would benefit from allowing
them to exploit models trained on math texts, while performance in the history
of chemistry would benefit from access to models trained on chemistry and
on general history. Current practice and the structure of prospective task
domains1 suggests that optimal partitioning of training and expertise would
be soft, and chosen to improve efficiency and effectiveness, not to restrict the
capabilities of any part.

21.8 Safe task focus is compatible with broad, SI-level world
knowledge

Machine translation systems today are not agents in any conventional sense of
the word, and are products of advances in an AI-development infrastructure,
not of open-ended “self improvement” of any distinct system. As we have
seen, domain-specific task focus is, in this instance, a robust and natural conse-
quence of optimization and training for a specific task, while high competence
in performing that task, employing open-ended knowledge, does not impair
the stability and well-bounded scope of the translation task.

It is reasonable to expect that a wide range of other tasks can follow the
same basic model,2 though the range of tasks that would naturally (or could
potentially) have this character is an open question. We can expect that broad
knowledge will be valuable and (in itself) non-threatening when applied to
tasks that range in scope from driving automobiles to engineering urban
transportation systems.

Further, broad understanding based on large corpora could contribute to
predictive models of human approval3 that provide rich priors for assessing
the desirability (or acceptability) of proposed plans for action by agent, help-
ing to solve a range of problems in aligning AI behaviors with human values.
By contrast, similar understanding applied to, for example, unconstrained
profit maximization by autonomous corporations, could engender enormous
risks.

1. Section 15: Development-oriented models align with deeply-structured AI systems

2. Section 12: AGI agents offer no compelling value

3. Section 22: Machine learning can develop predictive models of human approval
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21.9 Strong task focus does not require formal task specification

The MT task illustrates how a development-oriented perspective can reframe
fundamental questions of task specification. In MT development, we find
systems (now significantly automated1 [Britz et al. 2017]) that develop MT
architectures, systems that train those architectures, and (providing services
outside R&D labs2) the trained-and-deployed MT systems themselves. The
nature and scope of the MT task is implicit in the associated training data,
objective functions, resource constraints, efficiency metrics, etc., while tasks
of the systems that develop MT systems are indirectly implicit in that same
MT task (together with metalevel resource constraints, efficiency metrics, etc.).
Nowhere in this task structure is there a formal specification of what it means
to translate a language, or a need to formally circumscribe and limit the task.

Further Reading

• Section 2: Standard definitions of “superintelligence” conflate
learning with competence

• Section 7: Training agents in human-like environments can provide
useful, bounded services

• Section 10: R&D automation dissociates recursive improvement from AI agency
• Section 22: Machine learning can develop predictive models of human approval
• Section 23: AI development systems can support effective human guidance
• Section 35: Predictable aspects of future knowledge can inform AI safety strategies

22 Machine learning can develop predictive models of
human approval

By exploiting existing corpora that reflect human responses to actions

and events, advanced ML systems could develop predictive models of

human approval with potential applications to AI safety.

22.1 Summary

Advanced ML capabilities will precede the development of advanced AI
agents, and development of predictive models of human approval need not

1. Section 10: R&D automation dissociates recursive improvement from AI agency

2. Section 24: Human oversight need not impede fast, recursive
AI technology improvement
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incur agent-related risks. Potential training resources for models of human
approval include corpora of text and video that reflect millions of person-
years of real and imagined actions, events, and human responses; potential
corpora include news, history, fiction, law, philosophy, and more. Limited yet
broad predictive models of human (dis)approval could provide commonsense
defaults and constraints on both long-term plans and immediate actions. The
challenges and potential applications of developing useful models of human
approval suggest a range of topics for further consideration and inquiry.

22.2 Advanced ML technologies will precede advanced AI agents

The R&D-automation model of AI development shows how asymptotically-
recursive AI-technology improvement could yield superintelligent systems
(e.g., machine learning systems) without entailing the use of agents. In this
model, agents are potential products, not necessary components.

22.3 Advanced ML can implement broad predictive models of
human approval

As Stuart Russell has remarked, AI systems will be able to learn patterns
of human approval “Not just by watching, but also by reading. Almost
everything ever written down is about people doing things, and other people
having opinions about it.”

By exploiting evidence from large corpora (and not only text),
superintelligent-level machine learning could produce broad, predic-
tive models of human approval and disapproval of actions and events
(note that predicting human approval conditioned on events is distinct from
predicting the events themselves). Such models could help guide and
constrain choices made by advanced AI agents, being directly applicable to
assessing intended consequences of actions.

22.4 Text, video, and crowd-sourced challenges can provide
training data

Models of human approval can draw on diverse and extensive resources. Exist-
ing corpora of text and video reflect millions of person-years of actions, events,
and human responses; news, tweets, history, fiction, science fiction, advice
columns, sitcoms, social media, movies, CCTV cameras, legal codes, court
records, and works of moral philosophy (and more) offer potential sources of
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training data. An interactive crowd-sourcing system could challenge partici-
pants to “fool the AI” with difficult cases, eliciting erroneous predictions of
approval to enable training on imaginative hypotheticals.

22.5 Predictive models of human approval can improve AI safety

Predictive models of human approval and disapproval could serve as safety-
relevant components of structured AI systems. Armstrong’s (2017) concept of
low-impact AI systems points to the potentially robust value of minimizing sig-
nificant unintended consequences of actions, and models of human approval
imply models of what human beings regard as significant. When applied
to Christiano’s (2014) concept of approval-directed agents, general models of
human approval could provide strong priors for interpreting and generalizing
indications of human approval for specific actions in novel domains.1

22.6 Prospects for approval modeling suggest topics for further
inquiry

The concept of modeling human approval by exploiting large corpora em-
braces a wide range of potential implementation approaches and applications.
The necessary scope and quality of judgment will vary from task to task, as
will the difficulty of developing and applying adequate models. In considering
paths forward, we should consider a spectrum of prospective technologies
that extends from current ML capabilities and training methods to models
in which we freely assume superhuman capabilities for comprehension and
inference.

In considering high-level capabilities and applications, questions may arise
with ties to literatures in psychology, sociology, politics, philosophy, and
economics. Models of approval intended for broad application must take
account of the diversity of human preferences, and of societal patterns of
approval and disapproval of others’ preferences.

Criteria for approval may be relatively straightforward for self-driving cars,
yet intractable for tasks that might have broad effects on human affairs. For
tasks of broad scope, the classic problems of AI value alignment arise, yet
some of these problems (e.g., perverse instantiation) could be substantially
mitigated by concrete models of what human beings do and do not regard as
acceptable.

1. Note that learning predictive models of a human observer’s approval can enable an RL
system to learn difficult tasks: see Christiano et al. (2017).
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Further Reading

• Section 8: Strong optimization can strongly constrain AI capabilities, behavior,
and effects

• Section 10: R&D automation dissociates recursive improvement from AI agency
• Section 21: Broad world knowledge can support safe task performance
• Section 23: AI development systems can support effective human guidance
• Section 24: Human oversight need not impede fast, recursive

AI technology improvement
• Section 28: Automating biomedical R&D does not require defining human wel-

fare

23 AI development systems can support effective
human guidance

Advanced, interactive AI development resources could greatly facilitate

the use of human guidance in developing safe, high-level AI services.

23.1 Summary

Prospects for sharply accelerated development of AI technologies raise ques-
tions regarding the effectiveness of human guidance. Basic research requires
only loosely coupled human guidance; in AI application development, by con-
trast, human guidance is typically essential to the value and safety of products.
When exploring challenging, advanced-AI development scenarios, we should
consider potential AI-enabled resources and mechanisms that could help us
align AI applications with human goals. A non-exhaustive list includes:

• Strong natural language understanding
• Broad models of human approval and disapproval
• Interactive development of task objectives
• Learning from humans through observation
• Large-scale aggregation of experience and supervision
• Routine but cost-sensitive recourse to human advice
• Adversarial, AI-enabled criticism and monitoring

Prospects for AI-supported human guidance suggest that applications of
high-level AI could potentially reduce, rather than increase, the challenges of
aligning AI applications with human goals.
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23.2 Facilitating human guidance is part of the AI-application
development task

Facilitating human guidance a key AI service that can improve tradeoffs
between AI development speed and human satisfaction. Models of human
guidance in which a person confronts “an AGI” ab initio appear neither work-
able nor realistic; more realistic models can instead consider prospects for
diverse AI systems that emerge from structured, AI-enabled development
processes in which goal-alignment is part of the development task.

23.3 Development tasks include task selection, system design,
training, testing, deployment, in-use feedback, and upgrades

Realistic models of AI application development must consider the perva-
sive, path-dependent structure of actual system development. Systems are
composed of components, and development tasks for both systems and com-
ponents include function definition and system design, then testing, imple-
mentation deployment, in-use feedback, and upgrades (typically performed
in iterative, looped, overlapping stages). Prospects for successfully applying
AI-enabled capabilities to AI system development are best understood in the
context of structured, task-oriented products and development processes.1

23.4 We should assume effective use of natural-language
understanding

In considering advanced AI capabilities, should assume that a range of current
objectives have been achieved, particularly where we see strong progress today.
In particular, natural-language understanding (Johnson et al. 2016) can support
powerful mechanisms for defining AI tasks and providing feedback on AI-
system behaviors. Even imperfect language understanding can be powerful
because both large text corpora and interactive communication (potentially
drawing on the knowledge and expressive capabilities of many individuals)
can help to disambiguate meaning.

23.5 Generic models of human (dis)approval can provide useful
priors

In some applications, avoiding undesirable AI behaviors will require a broad
understanding of human preferences. Explicit rules and direct human instruc-

1. Section 15: Development-oriented models align with deeply-structured AI systems
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tion seem inadequate, but (along lines suggested by Stuart Russell [Wolchover
2015]) advanced machine learning could develop broad, predictive models
of human approval and disapproval1 by drawing on large corpora of, for
example, news, history, science fiction, law, and philosophy, as well as the
cumulative results of imaginative, crowd-sourced challenges. Generic models
of human (dis)approval can provide useful priors in defining task-specific
objectives, as well as constraints on actions and side-effects.

Note that predicting human approval conditioned on events is distinct
from predicting the events themselves. Accordingly, in judging an agent’s po-
tential actions, predictive models of approval may fail to reflect unpredictable,
unintended consequences, yet be effective in assessing predicted, intended
consequences (of, e.g., misguided or perverse plans).

23.6 Bounded task objectives can be described and circumscribed

Describing objectives is an initial step in systems development, and conven-
tional objectives are bounded in terms of purpose, scope of action, allocated
resources, and permissible side-effects. Today, software developed for self-
driving cars drives particular cars, usually on particular streets; in the future,
systems developed to study cancer biology will perform experiments in par-
ticular laboratories, systems developed to write up experimental results will
produce descriptive text, AI-architecting systems will propose candidate ar-
chitectures, and so on. Priors based on models of human approval2 can help
AI development systems suggest task-related functionality, while models of
human disapproval can can help development systems suggest (or imple-
ment) hard and soft constraints; along lines suggested by Armstrong (2013),
these can include minimizing unintended effects that people might regard as
important.

23.7 Observation can help systems learn to perform human tasks

For task that humans can perform, human behavior can be instructive, not
only with respect to means (understanding actions and their effects), but with
respect to ends (understanding task-related human objectives). Technical stud-
ies of cooperative inverse reinforcement learning (Hadfield-Menell et al. 2016)
address problems of learning through task-oriented observation, demonstra-
tion, and teaching, while Paul Christiano’s work (Christiano 2015b) on scalable

1. Section 22: Machine learning can develop predictive models of human approval

2. Section 22: Machine learning can develop predictive models of human approval
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control explores (for example) how observation and human supervision could
potentially be extended to challenging AI tasks while economizing on human
effort. Generic predictive models of human approval can complement these
approaches by providing strong priors on human objectives in performing
tasks while avoiding harms.

23.8 Deployment at scale enables aggregated experience and
centralized learning

Important AI services will often entail large-scale deployments that enable
accelerating learning1 from instances of success, failure, and human responses
(potentially including criticism and advice). In addition to accelerating im-
provement across large deployments, aggregated experience and learning can
increase the benefit-to-cost ratio of using and teaching systems by multiplying
the system-wide value of users’ correcting and advising individual system-
instances while diluting the per-user burdens of encountering correctable
errors.

23.9 Recourse to human advice will often be economical and
effective

Imperfect models of human approval can be supplemented and improved by
recourse to human advice. Imperfect models of approval should contain more
reliable models of human concern; an expectation of concern together with
uncertainty regarding approval could prompt recourse (without overuse) of
human advice. Using advice in learning from aggregated experience2 would
further economize the use of human attention.

23.10 AI-enabled criticism and monitoring can strengthen
oversight

Concerns regarding perverse planning by advanced AI agents could poten-
tially be addressed by applying comparable AI capabilities to AI development
and supervision. In AI development, the aim would be to understand and
avoiding the kinds of goals and mechanisms that could lead to such plans; in

1. Section 16: Aggregated experience and centralized learning
support AI-agent applications

2. Section 16: Aggregated experience and centralized learning
support AI-agent applications

116



AI applications, the aim would be to monitor plans and actions and recognize
and warn of potential problems (or to intervene and forestall them). This
kind of AI-enabled adversarial analysis, testing, monitoring, and correction
need not be thwarted by collusion among AI systems,1 even if these systems
operate at superintelligent levels of competence.

23.11 AI-enabled AI development could both accelerate
application development and facilitate human guidance

Fast AI technology improvement will increase the scope for bad choices and
potentially severe risks. Established practice in system development, however,
will favor a measure of intelligent caution, informed by contemporaneous
experience and safety-oriented theory and practice.2 We can expect the temp-
tation to move quickly by accepting risks to be offset to some extent by
improved support for goal-aligned function definition, system design, testing,
deployment, feedback, and upgrade.

It is very nearly a tautology to observe that the balanced use of powerful AI
development capabilities can reduce the cost of producing safe and reliable
AI products. Further, the underlying principles appear to scale to AI develop-
ment technologies that enable the safe implementation of a full spectrum of
AI services with superhuman-level performance. This potential, of course, by
no means assures the desired outcome.

Further Reading

• Section 8: Strong optimization can strongly constrain AI capabilities, behavior,
and effects

• Section 21: Broad world knowledge can support safe task performance
• Section 22: Machine learning can develop predictive models of human approval
• Section 24: Human oversight need not impede fast, recursive

AI technology improvement
• Section 28: Automating biomedical R&D does not require defining human wel-

fare
• Section 35: Predictable aspects of future knowledge can inform AI safety strategies
• Section 36: Desiderata and directions for interim AI safety guidelines

1. Section 20: Collusion among superintelligent oracles can readily be avoided

2. Section 35: Predictable aspects of future knowledge can inform AI safety strategies
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24 Human oversight need not impede fast, recursive
AI technology improvement

Human guidance and safety-oriented monitoring can operate outside

core technology development loops, and hence are compatible with fast,

recursive AI technology improvement.

24.1 Summary

It has been suggested that competitive pressures would favor fully automated
AI technology development, minimizing human involvement in favor of speed,
and potentially sacrificing safety. Technology development, however, differs
from application development. Improvement of core research-enabling AI
technologies (e.g., algorithms, architectures, training methods, and develop-
ment infrastructure) need not be directly linked to applications, hence need
not have direct, potentially problematic effects on the world. In considering
human involvement in R&D, we can distinguish between participation, guid-
ance, and monitoring. Here, participation acts within (and potentially delays)
a process, guidance sets objectives for a process, and monitoring enables, for
example, safety-oriented interventions. Both guidance and monitoring can oper-
ate outside core technology-development loops, hence need not impose delays;
participation is optional, and can be a contribution rather than an impediment.
Increasing development speed by relaxing in-the-loop human participation
need not sacrifice guidance or safety-oriented monitoring. Automation of
world-oriented application development presents different challenges and risks.

24.2 Must pressure to accelerate AI technology development
increase risk?

Technical and economic objectives will continue to drive incremental yet
potentially thorough automation of AI R&D. In considering asymptotically
recursive automation of AI R&D,1 it is natural to think of ongoing human
involvement as a source of safety, but also of delays, and to ask whether
competitive pressures to maximize speed by minimizing human involvement
will incur risks. “AI R&D”, however, embraces a range of quite different tasks,
and different modes of human involvement differ in their effects on speed and
safety. Understanding the situation calls for a closer examination.

1. Section 10: R&D automation dissociates recursive improvement from AI agency
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24.3 Basic technology research differs from world-oriented
applications

It is important to distinguish basic AI technology development from AI ap-
plication development. Recursive technology improvement entails the de-
velopment of AI technologies that support AI technology development; in
this process, basic AI technologies (e.g., algorithms, training methods, ML
components, and AI R&D tools) serve as both products and components of
recursive R&D loops, while world-oriented application development operates
outside those loops, building on their products. Thus, recursive R&D loops
need not be directly linked to world-oriented applications, hence need not
have direct effects on the world. When we ask whether human involvement
might slow recursive improvement, we are asking a question about basic AI
technology research; when we ask about risks, we are typically concerned
with AI applications.

24.4 We can distinguish between human participation, guidance,
and monitoring

In considering human involvement in R&D, we can distinguish between
participation, guidance, and monitoring. Here, participation implies human
actions within an R&D loop, potentially causing delays; guidance means setting
objectives and assessing results (e.g., by evaluating the performance of new
ML components in applications development) in order to orient research;
monitoring means observation (e.g., of information flows, resource allocation,
and the capabilities of delivered components) in order to prompt safety-
oriented interventions.

24.5 Guidance and monitoring can operate outside the central AI
R&D loop

Both guidance and monitoring operate outside the R&D loop for basic technol-
ogy improvement: Guidance directs R&D toward valuable outputs, not by di-
rect involvement in R&D loops, but by providing feedback signals that (for ex-
ample) help to train operational R&D components or help R&D-management
components allocate resources toward productive activities. Monitoring seeks
to forestall potential risks, not by direct involvement in R&D loops, but by en-
abling interventions that forestall misbehavior mediated by R&D outputs. The
nature of potential misbehaviors and requisite monitoring and interventions
is outside the scope of the present discussion; policies would presumably be
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informed by contemporaneous, cumulative experience and safety research.1

24.6 Fast, asymptotically-recursive basic research need not
sacrifice safety

Because neither guidance nor monitoring operates inside an R&D loop, hu-
man involvement need not entail delays. Thus, if fully recursive technology
improvement becomes both feasible and desirable, maximizing the rate of
progress in basic AI technologies need not sacrifice potentially safety-critical
human roles.

24.7 World-oriented applications bring a different range of
concerns

Application development and deployment will typically have direct effects on
the human world, and many applications will call for iterative development
with extensive human involvement. World-oriented application development
operates outside the basic-technology R&D loop, placing it beyond the scope
of the present discussion.

Further Reading

• Section 20: Collusion among superintelligent oracles can readily be avoided
• Section 21: Broad world knowledge can support safe task performance
• Section 22: Machine learning can develop predictive models of human approval
• Section 23: AI development systems can support effective human guidance
• Section 28: Automating biomedical R&D does not require defining human wel-

fare
• Section 35: Predictable aspects of future knowledge can inform AI safety strategies

25 Optimized advice need not be optimized to induce
its acceptance

Advice optimized to produce results may be manipulative, optimized

to induce a client’s acceptance; advice optimized to produce results

conditioned on its acceptance will be neutral in this regard.

1. Section 35: Predictable aspects of future knowledge can inform AI safety strategies
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25.1 Summary

To optimize advice to produce a result entails optimizing the advice to ensure
its acceptance, and hence to manipulate the clients’ choices. Advice can in-
stead be optimized to produce a result conditioned on the advice being accepted;
because the expected value of an outcome conditioned on an action is indepen-
dent of the probability of the action, there is then no value in manipulating
clients’ choices. In an illustrative (and practical) case, a client may request
advice on options that offer different trade-offs between expected costs, bene-
fits, and risks; optimization of these options does not entail optimization to
manipulate a client’s choice among them. Manipulation remains a concern,
however: In a competitive situation, the most popular systems may optimize
advice for seduction rather than value. Absent effective counter-pressures,
competition often will (as it already does) favor the deployment of AI systems
that strongly manipulate human choices.

25.2 Background (1): Classic concerns

“Oracles” (Bostrom 2014) are a proposed class of high-level AI systems that
would provide answers in response to queries by clients; in the present context,
oracles that provide advice on how to achieve goals are of particular interest.
It has sometimes been suggested that oracles would be safer than comparable
agents that act in the world directly, but because oracles inevitably affect the
world through their clients’ actions, the oracle/agent distinction per se can
blur. To clarify this situation, it is important to consider (without claiming
novelty of either argument or result) whether optimizing oracles to produce
effective advice entails their optimizing advice to affect the world.

25.3 Background (2): Development-oriented models

In the RDA-process model,1 research produces basic components and tech-
niques, development produces functional systems, and application produces
results for users. In AI development, an advisory oracle will be optimized for
some purpose by a chain of systems that are each optimized for a purpose:

• AI research optimizes components and techniques to enable develop-
ment of diverse, effective AI systems.

• Advisory-oracle development optimizes systems to suggest options for
action across some range of situations and objectives.

1. Section 10: R&D automation dissociates recursive improvement from AI agency
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• Advisory-oracle application suggests actions optimized to achieve
given objectives in specific situations.

Each stage in an RDA process yields products (components, oracles, advice)
optimized with respect to performance metrics (a.k.a. loss functions).

25.4 Optimization for results favors manipulating clients’
decisions

Giving advice may itself be an action intended to produce results in the
world. To optimize advice to produce a result, however, entails optimizing
the advice to ensure that the advice is applied. In current human practice,
advice is often intended to manipulate a client’s behavior to achieve the
advisor’s objective, and a superintelligent-level AI advisor could potentially
do this very well. At a minimum, an oracle that optimizes advice to produce
results can be expected to distort assessments of costs, benefits, and risks
to encourage fallible clients to implement supposedly “optimal” policies. A
range of standard AI-agent safety problems (e.g., perverse instantiation and
pursuit of convergent instrumental goals) then arise with full force.

Optimizing oracles to produce advice intended to produce results seems
like a bad idea. We want to produce oracles that are not designed to deceive.

25.5 Optimization for results conditioned on actions does not
entail optimization to manipulate clients’ decisions

Oracles could instead be optimized to offer advice that in turn is optimized,
not to produce results, but to produce results contingent on the advice being
applied. Because the expected value of an outcome conditioned on an action
is independent of the probability of the action, optimal advice will not be
optimized to manipulate clients’ behavior.

25.6 Oracles can suggest options with projected costs, benefits,
and risks

Because human beings have preferences that are not necessarily reducible
to known or consistent utility functions, it will be natural to ask advisory-
oracles to suggest and explain sets of options that offer different, potentially
incommensurate combinations of costs, benefits, and risks; thus, useful advice
need not be optimized to maximize a predefined utility function, but can
instead be judged by Pareto-optimality criteria. With optimization of out-
comes conditioned on acceptance, the quality of assessment of costs, benefits,
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and risks will be limited by AI competencies, undistorted by a conflicting
objective to manipulate clients’ choices among alternatives. (Note that the
burden of avoiding options that perversely instantiate objectives rests on
the quality of the options and their assessment,1 not on the avoidance of
choice-manipulation.)

25.7 Competitive pressures may nonetheless favor AI systems
that produce perversely appealing messages

If multiple AI developers (or development systems) are in competition, and
if their success is measured by demand for AI systems’ outputs, then the
resulting incentives are perverse: Advice that maximizes appeal will often be
harmful, just as news stories that maximize attention often are false.

Because AI-enabled communications will permit radical scaling of decep-
tion in pursuit of profit and power, it seems likely that human-driven appli-
cations of these capabilities will be the leading concern as we move forward
in AI technology. It seems likely that effective countermeasures will likewise
require AI-enabled communication that influences large audiences.

Further Reading

• Section 20: Collusion among superintelligent oracles can readily be avoided
• Section 21: Broad world knowledge can support safe task performance
• Section 22: Machine learning can develop predictive models of human approval
• Section 23: AI development systems can support effective human guidance

26 Superintelligent-level systems can safely provide
design and planning services

Superintelligent-level AI systems can safely converse with humans, per-

form creative search, and propose designs for systems to be implemented

and deployed in the world.

26.1 Summary

Design engineering provides a concrete example of a planning task that
could benefit from superintelligent-level support, but interactive systems for

1. Section 22: Machine learning can develop predictive models of human approval
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performing such tasks match classic templates for emergent AI agency and
risk. Nonetheless, examining design systems at the level of task requirements,
component capabilities, and development processes suggests that classic AI-
agent risks need not arise. In design engineering, effective human oversight
is not an impediment, but a source of value. Superintelligent-level services
can help solve (rather than create) AI-control problems; for example, strong
models of human concerns and (dis)approval can be exploited to augment
direct human oversight.

26.2 Design engineering is a concrete example of a planning task

Planning tasks relate means to ends, and systems-level design engineering
offers an illustrative example. Systems engineering tasks are characterized
by complex physical and and causal structures that often involve complex
and critical interactions with human concerns. As with most planning tasks,
system-level design is intended to optimize the application of bounded means
(finite materials, time, costs. . . ) to achieve ends that are themselves bounded
in space, time, and value.

26.3 AI-based design systems match classic templates for
emergent AI-agent risk

Classic models of potentially catastrophic AI risk involve the emergence
(whether by design or accident) of superintelligent AI systems that pursue
goals in the world. Some implementations of question-answering systems (“or-
acles”) could present dangers through their potential ability to recruit human
beings to serve as unwitting tools (Superintelligence, Bostrom 2014); hazardous
characteristics would include powerful capabilities for modeling the external
world, formulating plans, and communicating with human beings.

Nonetheless, we can anticipate great demand for AI systems that have all
of these characteristics. To be effective, AI-enabled design systems should be
able to discuss what we want to build, explore candidate designs, assess their
expected performance, and output and explain proposals.

The classic model proposes that these tasks be performed by a system
with artificial general intelligence (an AGI agent) that, in response to human
requests, will seek to optimize a corresponding utility function over states
of the world. Because a fully-general AGI agent could by definition perform
absolutely any task with superhuman competence, it requires no further
thought to conclude that such an agent could provide engineering design
services.
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26.4 High-level design tasks comprise distinct non-agent-like
subtasks

9 diagrams an abstract, high-level task structure for the development and
application of AI-enabled design systems.

Figure 9: A task structure & architecture for interactive design engi-
neering

In this architecture:

• A top-level conversational interface translates between human language
(together with sketches, gestures, references to previous designs, etc.)
and abstract yet informal conceptual descriptions.

• A second level translates between informal conceptual descriptions
and formal technical specifications, supporting iterative definition and
refinement of objectives, constraints, and general design approach. Gen-
eral AI, etc. : Comprehensive AI Services (CAIS)

• The core of the design process operates by iterative generate-and-test,
formulating, simulating, and scoring candidate designs with respect
to objectives and constraints (including constraints that are tacit and
general).

• To enable systems to build on previous results, novel designs can be
abstracted, indexed, and cached in a shared library.

• Upstream from design tasks, the development and upgrade of AI-
enabled design systems is itself a product of AI-enabled design that
integrates progress in basic AI technologies with domain-specific
application experience.

• Downstream from design tasks, design products that pass (AI-
supported) screening and comparison with competing designs may
be deployed and applied, generating application experience that can
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inform future design.

In considering the task structure outlined in 9, is important to recognize that
humans (today’s agents with general intelligence) organize system design
tasks in the same general way. The system shown in

9 is not more complex than a black-box AGI agent that has acquired engi-
neering competencies; instead, it makes explicit the kinds of tasks that must
implemented, regardless of how those tasks might be implemented and pack-
aged. Hiding requirements in a black box does not make them go away.

26.5 Real-world task structures favor finer-grained task
decomposition

As an aside, we should expect components of engineering systems to be more
specialized than those diagrammed above: An any but the most abstract levels,
design methods for integrated-circuit design are distinct from methods for
aerospace structural engineering, organic synthesis, or AI system architecture,
and methods for architecting systems built of diverse subsystems are substan-
tially different from all of these. The degree of integration of components
will be a matter of convenience, responsive to considerations that include the
value of modularity in fault isolation and functional transparency.

26.6 Use of task-oriented components minimizes or avoids classic
AI risks

Consider the flow of optimization and selection pressures implicit in the
architecture sketched in 9:

• Systems for basic AI R&D are optimized and selected to produce di-
verse, high-performance tools (algorithms, generic building blocks. . . )
to be used by AI systems that develop AI systems. Off-task activities
will incur efficiency costs, and hence will be disfavored by (potentially
superintelligent) optimization and selection pressures.

• AI systems that develop AI systems are optimized and selected to pro-
duce components and architectures that perform well in applications
(here, engineering design). As with basic R&D, off-task activities will
incur efficiency costs, and hence will be disfavored.

• All systems, including system-design systems, consist of stable, task-
focused components subject to upgrade based on aggregated application
experience.
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Note that none of these components has a task that includes optimizing either
its own structure or a utility function over states of the world.

26.7 Effective human oversight is not an impediment, but a
source of value

The role of human oversight it to get what people want, and as such, identi-
fying and satisfying human desires is not an impediment to design, but part
of the design process. Comprehensive AI services can include the service of
supporting effective human oversight, however, as discussed in safety-oriented
requirements for human oversight of basic AI R&D (algorithms, architectures,
etc.) are minimal,1 and need not slow progress.

In design, as in other applications of AI technologies, effective human over-
sight is not enough to avoid enormous problems, because even systems that
provide what people think they want can have adverse outcomes. Perversely
seductive behaviors could serve the purposes of bad actors, or could arise
through competition to develop systems that gain market share (consider the
familiar drive to produce news that goes viral regardless of truth, and foods
that stimulate appetite regardless of health).

26.8 SI-level systems could solve more AI-control problems than
they create

We want intelligent systems that help solve important problems, and should
consider how superintelligent-level competencies could be applied to solve
problems arising from superintelligence. There is no barrier to using AI to
help solve problems of AI control: Deceptive collusion among intelligent
problem-solving systems would require peculiar and fragile preconditions.2

(The popular appeal of “us vs. them” framings of AI control is perhaps best
understood as a kind of anthropomorphic tribalism.)

26.9 Models of human concerns and (dis)approval can augment
direct oversight

In guiding design, key resources will be language comprehension and modeling
anticipated human (dis)approval.3 Among the points of potential leverage:

1. Section 24: Human oversight need not impede fast, recursive
AI technology improvement

2. Section 20: Collusion among superintelligent oracles can readily be avoided

3. Section 22: Machine learning can develop predictive models of human approval
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• Strong priors on human concerns to ensure that important considera-
tions are not overlooked.

• Strong priors on human approval to ensure that standard useful features
are included by default.

• Strong priors on human disapproval to ensure that options with pre-
dictable but excessively negative unintended effects are dropped.

• Building on the above, effective elicitation of human intentions and
preferences through interactive questioning and explanation of design
options.

• Thorough exploration and reporting (to users and regulators) of poten-
tial risks, failure modes, and perverse consequences of a proposal.

• Ongoing monitoring of deployed systems to track unanticipated behav-
iors, failures, and perverse consequences.

26.10 The pursuit of superintelligent-level AI design services
need not entail classic AI-agent risks

To understand alternatives to superintelligent-AGI-agent models, it is best to
start with fundamentals—intelligence as problem solving capacity, problems
as tasks, AI systems as products of development, and recursive improvement
as a process centered on technologies rather than agents. Interactive design
tasks provide a natural model of superintelligent-level, real-world problem
solving, and within this framework, classic AI-agent problems arise either
in bounded contexts, or as a consequence of reckless choices in AI-system
development.

Further Reading

• Section 12: AGI agents offer no compelling value
• Section 20: Collusion among superintelligent oracles can readily be avoided
• Section 22: Machine learning can develop predictive models of human approval
• Section 23: AI development systems can support effective human guidance
• Section 24: Human oversight need not impede fast, recursive

AI technology improvement
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27 Competitive pressures provide little incentive to
transfer strategic decisions to AI systems

Requirements for swift response may motivate transfer of tactical-level

control to AI systems; at a strategic level, however, humans will have

both time and good reason to consider suggested alternatives.

27.1 Summary

In a range of competitive, tactical-level tasks (e.g., missile guidance and fi-
nancial trading), potential advantages in decision speed and quality will
tend to favor direct AI control of actions. In high-level strategic decisions,
however—where stakes are higher, urgency is reduced, and criteria may be
ambiguous—humans can exploit AI competence without ceding control: If AI
systems can make excellent decisions, then they can suggest excellent options.
Human choice among strategic options need not impede swift response to
events, because even long-term strategies (e.g., U.S. nuclear strategy) can in-
clude prompt responses of any magnitude. In light of these considerations, we
can expect senior human decision makers to choose to retain their authority,
and without necessarily sacrificing competitiveness.

27.2 Pressures for speed and quality can favor AI control of
decisions

When AI systems outperform humans in making decisions (weighing both
speed and quality), competitive situations will drive humans to implement
AI-controlled decision processes. The benefits of speed and quality will differ
in different applications, however, as will the costs of error.

27.3 Speed is often critical in selecting and executing “tactical”
actions

Decision-speed can be critical: Computational systems outperform humans
in response time when controlling vehicles and launching defensive missiles,
offering crucial advantages, and military planners foresee increasing pres-
sures use AI-directed systems in high-tempo tactical exchanges. In tactical
military situations, as in high-frequency financial trading, failure to exploit
the advantages of AI control may lead to losses.
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27.4 Quality is more important than speed in strategic planning

High-level strategic plans almost by definition guide actions extended in time.
Even long-term strategies may of course be punctuated by prompt, conditional
actions with large-scale consequences: U.S. nuclear strategy, for example, has
been planned and revised over years and decades, yet contemplates swift and
overwhelming nuclear counterstrikes. Fast response to events is compatible
with deliberation in choosing and updating strategies.

27.5 System that can make excellent decisions could suggest
excellent options

Superior reasoning and information integration may enable AI systems to
identify strategic options with superhuman speed and quality, yet this need
not translate into a pressure for humans to cede strategic control. If AI systems
can make excellent decisions, then they can suggest excellent sets of options
for consideration by human decision makers.

Note that developing sets of options does not imply a commitment to
a utility function over world states; given uncertainties regarding human
preferences, it is more appropriate to apply Pareto criteria to potentially
incommensurate costs, benefits, and risks, and to offer proposals that need
not be optimized to induce particular choices.1 In this connection, it is also
important to remember that long-term strategies are normally subject to
ongoing revision in light of changing circumstances and preferences, and
hence adopting a long-term strategy need not entail long-term commitments.

27.6 Human choice among strategies does not preclude swift
response to change

Profoundly surprising events that call for superhumanly-swift, large-scale,
unanticipated strategic reconsideration and response seem likely to be rare,
particularly in hypothetical futures in which decision makers have made
effective use of superintelligent-quality strategic advice. Further, human
choice among strategic options need not be slow: Under time pressure, a
decision maker could scan a menu of presumably excellent options and make
a quick, gut choice. Beyond this, human-approved strategies could explicitly
allow for great flexibility under extraordinary circumstances. In light of these
considerations, substantial incentives for routine relinquishment of high-level
strategic control seem unlikely.

1. Section 25: Optimized advice need not be optimized to induce its acceptance
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27.7 Senior human decision makers will likely choose to retain
their authority

Absent high confidence that AI systems will consistently make choices aligned
with human preferences, ceding human control of increasingly high-level
decisions would incur increasing risks for declining (and ultimately slight)
benefits. As a practical matter, we can expect senior human decision makers
to choose to retain their authority unless forcibly dislodged, perhaps because
they have lost the trust of other, more powerful human decision makers.

Further Reading

• Section 12: AGI agents offer no compelling value
• Section 20: Collusion among superintelligent oracles can readily be avoided
• Section 21: Broad world knowledge can support safe task performance
• Section 23: AI development systems can support effective human guidance
• Section 25: Optimized advice need not be optimized to induce its acceptance

28 Automating biomedical R&D does not require
defining human welfare

Superintelligent-level support for tasks as broad as biomedical research

need not incur the classic problems of AGI value alignment.

28.1 Summary

It has been suggested that assigning AGI agents tasks as broad as biomedical
research (e.g., “curing cancer”) would pose difficult problems of AI control
and value alignment, yet a concrete, development-oriented perspective sug-
gests that problems of general value alignment can be avoided. In a natural
path forward, diverse AI systems would automate and coordinate diverse
biomedical research tasks, while human oversight would be augmented by AI
tools, including predictive models of human approval. Because strong task
alignment does not require formal task specification, a range of difficult prob-
lems need not arise. In light of alternative approaches to providing general AI
services, there are no obvious advantages to employing risky, general-purpose
AGI agents to perform even extraordinarily broad tasks.
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28.2 Broad, unitary tasks could present broad problems of value
alignment

“The Value Learning Problem” (Soares 2018) opens with an example of a
potential AGI problem:1

Consider a superintelligent system, in the sense of Bostrom (2014),
tasked with curing cancer [. . .] without causing harm to the human
(no easy task to specify in its own right). The resulting behavior may
be quite unsatisfactory. Among the behaviors not ruled out by this goal
specification are stealing resources, proliferating robotic laboratories at
the expense of the biosphere, and kidnapping human test subjects.

The following sections will consider biomedical research (including cancer
research tasks) from a general but more concrete, less unitary perspective,
concluding that undertaking AI-driven biomedical research need not risk
programs based on criminality (kidnapping, etc.) or catastrophic problems
of value alignment. (I thank Shahar Avin for suggesting this topic as a case
study.)

Diverse roles and tasks in biomedical research and applications:

Scientific research: Research direction:

Developing techniques Resource allocation

Implementing experiments Project management

Modeling biological systems Competitors, reviewers

Clinical practice: Oversight:

Patients Citizen’s groups

Physicians Regulatory agencies

Health service providers Legislatures

28.3 Diverse AI systems could automate and coordinate diverse
research tasks

Biomedical research and applications comprise extraordinarily diverse activi-
ties. Development of even a single diagnostic or therapeutic technology, for

1. This quote comes from an earlier draft (MIRI Technical report 2015–4), available at
https://intelligence.org/files/obsolete/ValueLearningProblem.pdf
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example, typically draws on many distinct areas of competence that support
concept development, experimentation, and data analysis. At a higher level of
research organization, project management and resource allocation call for
assessment of competing proposals1 in light of not only their technical merits,
but of their costs and benefits to human beings.

Progress in implementing AI systems that provide diverse superhuman
competencies could enable automation of a full range of technical and manage-
rial tasks, and because AI R&D is itself subject to automation,2 progress could
be incremental, yet swift. By contrast, it is difficult to envision a development
path in which AI developers would treat all aspects of biomedical research
(or even cancer research) as a single task to be learned and implemented by
a generic system. Prospects for radical improvements in physical tools (e.g.,
through molecular systems engineering) do not change this general picture.

28.4 Human oversight can be supported by AI tools

Within the scope of biomedical research, several areas—resource investments,
in-vivo experimentation, and clinical applications—call for strong human over-
sight, and oversight is typically mandated not only by ethical concerns, but by
law, regulation, and institutional rules. Human oversight is not optional (it is
part of the task), yet AI applications could potentially make human oversight
more effective. For example, systems that describe research proposals3 in
terms of their anticipated human consequences would enable human over-
sight of complex research plans, while robust predictive models of human
concerns4 could be applied to focus scarce human attention. Consultation
with superintelligent-level advisors could presumable enable extraordinarily
well-informed judgments by patients and physicians.

28.5 Strong task alignment does not require formal task
specification

The example of language translation shows that task alignment need not
require formal task specification,5 and a development-oriented perspective
on concrete biomedical tasks suggests that this property may generalize quite

1. Section 12: AGI agents offer no compelling value

2. Section 10: R&D automation dissociates recursive improvement from AI agency

3. Section 23: AI development systems can support effective human guidance

4. Section 22: Machine learning can develop predictive models of human approval

5. Section 21: Broad world knowledge can support safe task performance
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widely. Although it is easy to envision both safe and unsafe configurations
of task-performing systems, it is reasonable to expect that ongoing AI safety
research (both theoretical and informed by ongoing experience) can enable
thorough automation of research while avoiding both unacceptable costs and
extraordinary risks stemming from emergent behaviors. If safety need not
greatly impede development, then unsafe development is best viewed as a
bad-actor risk.

28.6 The advantages of assigning broad, unitary tasks to AGI
agents are questionable

It has been persuasively argued (Bostrom 2014) that self-improving, general-
purpose AGI agents cannot safely be tasked with broad goals, or with seem-
ingly narrow goals that might motivate catastrophic actions. If a full range
of superintelligent-level AI capabilities can be provided efficiently by other
means,1 then the advantages of developing risky AGI agents are questionable.

The argument that access to general, superintelligent-level AI capabilities
need not incur the risks of superintelligent AGI agents includes the following
points:

• Recursive technology improvement2 is a natural extension of current
AI R&D, and does not entail recursive self improvement of distinct AI
systems: Agents are products, not development tools.

• Effective human oversight3 need not substantially impede recursive
improvement of basic AI technologies, while overseeing the development
of task-focused AI systems is similar to (but less risky than) specifying
tasks for an AGI system.

• Models of human approval4 can inform AI plans in bounded domains,
while the use of AI systems to examine the scope and effects of proposed
plans (in an implicitly adversarial architecture5) scales to superintelli-
gent proposers and critics.

It seems that there are no clear technical advantages to pursuing an AGI-agent
approach to biomedical research, while a task-focused approach provides a

1. Section 12: AGI agents offer no compelling value

2. Section 10: R&D automation dissociates recursive improvement from AI agency

3. Section 24: Human oversight need not impede fast, recursive
AI technology improvement

4. Section 22: Machine learning can develop predictive models of human approval

5. Section 20: Collusion among superintelligent oracles can readily be avoided
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natural path in which value-alignment problems are bounded and mitigated.
Until general value-alignment problems are solved, it would be wise to avoid
them.

Further Reading

• Section 10: R&D automation dissociates recursive improvement from AI agency
• Section 12: AGI agents offer no compelling value
• Section 20: Collusion among superintelligent oracles can readily be avoided
• Section 21: Broad world knowledge can support safe task performance
• Section 22: Machine learning can develop predictive models of human approval
• Section 23: AI development systems can support effective human guidance
• Section 24: Human oversight need not impede fast, recursive

AI technology improvement

29 The AI-services model reframes the potential roles
of AGI agents

Potential AGI agents should be considered in the context of a world that

will (or readily could) have prior access to general intelligence in the

form of comprehensive AI services.

29.1 Summary

Discussions of SI-level AI technologies and risks have centered on scenarios
in which humans confront AGI agents in a world that lacks other, more
tractable SI-level AI resources. There is, however, good reason to expect that
humans will (or readily could) have access to comprehensive, open-ended
AI services before AGI-agent systems are implemented. The open-ended AI-
services model of artificial general intelligence does not preclude (and in fact
would facilitate) the implementation of AGI agents, but suggests that AI risks,
and their intersection with the ethics of computational persons, should be
reexamined in the context of an AI milieu that can provide SI-level strategic
advice and security services.

29.2 It has been common to envision AGI agents in a weak-AI
context

In classic AGI-risk scenarios, advanced AI capabilities emerge in the form
of AGI agents that undergo recursive, transformative self-improvement to a
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superintelligent (SI) level; these agents then gain capabilities beyond those
of both human beings and human civilization. Studies and discussions in
this conceptual framework propose that, when confronted with AGI agents,
humans would lack prior access to tractable SI-level problem-solving capabil-
ities.

29.3 Broad, SI-level services will (or readily could) precede
SI-level AI agents

The technologies required to implement or approximate recursive AI technol-
ogy improvement are likely to emerge through heterogeneous AI-facilitated
R&D mechanisms,1 rather than being packaged inside a discrete entity or
agent. Accordingly, capabilities that could in principle be applied to imple-
ment SI-level AGI agents could instead2 be applied to implement general,
comprehensive AI services3 (CAIS), including stable, task-focused agents.4 In
this model, directly-applied AI services are distinct from services that develop
AI services,5 an approach that reflects natural task structures6 and has great
practical advantages.7

29.4 SI-level services will enable the implementation of AGI
agents

Although recursive technology improvement will most readily be developed
by means of heterogeneous, non-agent systems, any AI milieu that supports
“comprehensive AI services” could (absent imposed constraints) provide the
service of implementing SI-level AGI agents. This prospect diverges from
classic AGI-agent risk scenarios, however, in that a strong, pre-existing AI
milieu could be applied to implement SI-level advisory and security services.

1. Section 10: R&D automation dissociates recursive improvement from AI agency

2. Section 11: Potential AGI-enabling technologies also enable comprehensive
AI services

3. Section 12: AGI agents offer no compelling value

4. Section 16: Aggregated experience and centralized learning
support AI-agent applications

5. Section 26: Superintelligent-level systems can safely provide
design and planning services

6. Section 38: Broadly-capable systems coordinate narrower systems

7. Section 16: Aggregated experience and centralized learning
support AI-agent applications
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29.5 SI-level advisory and security services could limit AGI-agent
risks

The prospect of access SI-level advisory and security services fundamentally
changes the strategic landscape around classic AI-safety problems. For exam-
ple, “superpowers” as defined by Bostrom (2014) do not exist in a world in
which agents lack radically-asymmetric capabilities. Further, arguments that
SI-level agents would collude (and potentially provide collectively deceptive
advice), do not carry over to SI-level systems in a CAIS milieu,1 advice can be
objective, rather than manipulative,2 predictive models of human preferences
and concerns3 can improve the alignment of actions with human intentions
in performing well-bounded tasks.4

Arguments that competitive and security pressures would call for ceding
strategic control to AI systems are surprisingly weak: Tactical situations may
call for responses of SI-level quality and speed, but SI-level advisory and
security services could support strategic choices among excellent options, de-
liberated at a human pace.5 Crucially, in a range of potential defense/offense
scenarios, the requisite security systems could be endowed with arbitrarily
large advantages in resources for strategic analysis, tactical planning, intel-
ligence collection, effector deployment, and actions taken to preclude or re-
spond to potential threats. In choosing among options in the security domain,
humans would likely prefer systems that are both reliable and unobtrusive.

Many AI safety strategies have been examined to date, and all have difficul-
ties; it would be useful to explore ways in which tractable SI-level problem-
solving capabilities could be applied to address those difficulties. In exploring
potential responses to future threats, it is appropriate to consider potential
applications of future capabilities.

1. Section 20: Collusion among superintelligent oracles can readily be avoided

2. Section 25: Optimized advice need not be optimized to induce its acceptance

3. Section 22: Machine learning can develop predictive models of human approval

4. Section 16: Aggregated experience and centralized learning
support AI-agent applications

5. Section 27: Competitive pressures provide little incentive to transfer strategic decisions
to AI systems
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29.6 SI-level capabilities could mitigate tensions between
security concerns and ethical treatment of non-human
persons

The spectrum of potential AGI systems includes agents that should, from a
moral perspective be regarded as persons and treated accordingly. Indeed, the
spectrum of potential computational persons includes emulations of generic
or specific human beings1. To fail to treat such entities as persons would, at
the very least, incur risks of inadvertently committing grave harm.

It has sometimes been suggested that security in a world with SI-level AI
would require stunting, “enslaving”, or precluding the existence of compu-
tational persons. The prospect of robust, SI-level security services, however,
suggests that conventional and computational persons could coexist within a
framework stabilized by the enforcement of effective yet minimally-restrictive
law.

Bostrom’s (2014, p.201–208) concept of “mind crime” presents what are
perhaps the most difficult moral questions raised by the prospect of computa-
tional persons. In this connection, SI-level assistance may be essential not only
to prevent, but to understand the very nature and scope of potential harms
to persons unlike ourselves. Fortunately, there is seemingly great scope for
employing SI-level capabilities while avoiding potential mindcrime, because
computational systems that provide high-order problem-solving services need
not be equivalent to minds.2

29.7 Prospects for superintelligence should be considered in the
context of an SI-level AI services milieu

The prospect of access to tractable, SI-level capabilities reframes the strategic
landscape around the emergence of advanced AI. In this connection, it will be
important to reexamine classic problems of AI safety and strategy, not only
in the context of an eventual SI-level AI services milieu, but along potential
paths forward from today’s AI technologies.

Further Reading

• Section 5: Rational-agent models place intelligence in an
implicitly anthropomorphic frame

1. For example, “Ems” (Hanson 2016)

2. Section 5: Rational-agent models place intelligence in an
implicitly anthropomorphic frame
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• Section 10: R&D automation dissociates recursive improvement from AI agency
• Section 11: Potential AGI-enabling technologies also enable comprehensive

AI services
• Section 12: AGI agents offer no compelling value
• Section 16: Aggregated experience and centralized learning

support AI-agent applications
• Section 20: Collusion among superintelligent oracles can readily be avoided
• Section 22: Machine learning can develop predictive models of human approval
• Section 25: Optimized advice need not be optimized to induce its acceptance
• Section 26: Superintelligent-level systems can safely provide

design and planning services
• Section 27: Competitive pressures provide little incentive to transfer strategic

decisions to AI systems
• Section 38: Broadly-capable systems coordinate narrower systems

30 Risky AI can help develop safe AI

Complex, unitary, untrusted AI systems could be leveraged to produce

non-problematic general-learning kernels through competitive optimiza-

tion for objectives that heavily weight minimizing description length.

30.1 Summary

In a familiar AGI threat model, opaque, self-improving AI systems give rise
to systems that incorporate wide-ranging information, learn unknown ob-
jectives, and could potentially plan to pursue dangerous goals. The R&D-
automation/AI-services model suggests that technologies that could enable
such systems would first be harnessed to more prosaic development paths,
but what if powerful AI-development capabilities were deeply entangled with
opaque, untrusted systems? In this event, conceptually straightforward meth-
ods could be employed to harness untrusted systems to the implementation
of general learning systems that lack problematic information and purposes.
Key affordances include re-running development from early checkpoints, and
applying optimization pressure with competition among diverse systems to
produce compact “learning kernels”. Thus, from a path that could lead to
problematic AGI agents, a readily accessible off-ramp leads instead to general
intelligence in the form of capabilities that enable open-ended AI-service
development. (These and related topics have been explored in an earlier form, but
in greater depth, in FHI Technical Report 2015-3 (Drexler 2015).)
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30.2 A familiar threat model posits opaque, self-improving,
untrusted AI systems

In a familiar AGI threat model, the pursuit of general, superintelligent level
AI leads to opaque, self-improving systems with ill-characterized information
content, inference capabilities, planning capabilities, and goals. Strong argu-
ments suggest that the use of such systems could pose grave risks (Bostrom
2014).

The present analysis will consider a near-worst-case scenario in which AI
development stands at the threshold of building such systems, rather than
considering how such a situation could be avoided. Further, it will consider
the hard case in which “general intelligence” is an indivisible property, a
capacity to learn more-or-less anything that a human can, and potentially
much more. Crucially, the analysis will neither equate intelligence as learning
capacity with intelligence as competence1 nor assume that a product system must
inherit the full information content of the producing system. Finally, it will
assume that researchers retain copies of precursors of systems of interest.

30.3 Open-ended “self-improvement” implies strong, general AI
implementation capabilities

“Self improvement” implies strong, general AI implementation capabilities,
yet in considering a chain of improved implementations, the concept of “self”
is at best ambiguous, and at worst is an anthropomorphic distraction.2 Op-
erationally, “self” improvement implies an opaque system that is capable
of implementing systems that are better than itself by some metric, and in
particular, is capable of implementing systems that are improved in the sense
of being better at implementing improved systems (etc.). In the proposed AGI
threat model, some earlier, non-problematic system was capable of serving
as a link in such a chain (given suitable machine resources, training data,
simulated environments, and tasks) and the actual development history from
that point led to a problematic result.

1. Section 2: Standard definitions of “superintelligence” conflate
learning with competence

2. Section 5: Rational-agent models place intelligence in an
implicitly anthropomorphic frame
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30.4 Successful system development can be recapitulated with
variations

In general, results in machine learning can be repeated with variations in
architectures, training data, simulated environments, training objectives, etc.
In the present instance, systems with the potential to give rise to a sequence
of improved systems are assumed to be architecturally opaque; nonetheless,
external affordances (training data, simulated environments, training objec-
tives, resource-optimization pressures, etc.) remain available. Development of
powerful systems can be recapitulated with variations induced by external
affordances, and these affordances can strongly affect the content of what is
learned. If the desired core functionality is development of learning systems,
it is likely that relatively abstract problem spaces will sufficient or optimal.
In addition, learning to optimize systems for learning a task does not require
access to detailed task-level training data or environments, and optimizing sys-
tems for the task of optimizing architectures for systems that learn a task is even
more abstract and remote from object-level training information. Note that
tasks at all levels are by nature bounded with respect to time and resources,
and hence do not naturally engender convergent instrumental goals.1

In research and development, different versions of systems are always in
implicit competition with one another to maximize performance on some
bounded task: Those that perform poorly by relevant metrics will be set
aside, while versions that perform well will be used to produce (or serve as
prototypes for) next-generation systems. Thus, the convergent goal of systems
under development is competition to perform bounded tasks, and by the
orthogonality thesis (Bostrom 2014), the pursuit of bounded goals can employ
arbitrarily high intelligence. In aggregate, such systems will (or readily could)
satisfy conditions that exclude collusion.2

30.5 Optimization can favor the production of compact, general
learning kernels

The scheme outlined here centers on competitive optimization of “learning
kernels” for “compactness”, where a learning kernel is a system that, in
conjunction with computational resources, auxiliary components, and a set
of benchmark “demo tasks”, can produce an expanded set of systems that

1. Section 19: The orthogonality thesis undercuts the generality
of instrumental convergence

2. Section 20: Collusion among superintelligent oracles can readily be avoided
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perform those tasks at some given level of performance. Here, optimizing for
compactness implies minimizing a weighted sum of the kernel’s description
length (operationally, the number of bits in a string that decompresses and
compiles to build the system) and metrics corresponding to the resources it
consumes in expansion; in the present context, compactness is assumed to
give heavy weight to description length, penalizing resource consumption
only to exclude undue computational costs. If kernel expansion can produce a
range of systems that perform each of a sufficiently broad range of challenging
demo tasks, then the learning kernel can be considered general. Examples of
demo-task domains might include:

• Language translation
• Visual perception
• Robotic control
• Spacecraft design
• Chemical synthesis
• Strategic planning
• Theorem proving
• Software development

Note that current practice in AI research does in fact iteratively develop,
train, and improve relatively compact learning kernels (architectures and al-
gorithms) that, through training, expand their information content to produce
systems that perform tasks in particular domains.

Figure 10: Applying problematic, ill-characterized AI systems to im-
plementation tasks under competitive optimization pressure could
produce clean, compact systems with general learning capabilities.
(Schematic diagram)
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30.6 Competitive optimization for compactness can exclude
problematic information and competencies

Competition for learning-kernel compactness, subject to retaining generality,
will strongly exclude potentially-problematic information that does not con-
tribute to the process of learning target competencies. A world-beating Go
system need not “know” that it is “playing a game”; a high-quality machine
translation system need not “know” that its outputs are “requested by human
beings”; a machine vision system need not “know” that its capabilities enable
“autonomous vehicle control”. A compact, general kernel that can generate
Go-learning, language-learning, and vision-learning systems can (and under
optimization, must) “know” even less about concrete tasks, domains, and
intended applications in a “human world”.

In the standard AGI threat model, self-improvement (which is to say, AI
implementation capability) is capable of producing systems that operate at
a superintelligent level. Systems at this level that are optimized to optimize
general learning kernels for compactness presumably can be quite effective
at stripping out information that is unnecessary for task performance. Given
that post-bottleneck training data can provide all domain-relevant informa-
tion, together with auxiliary resources such as efficient numerical algorithms,
effective optimization will strip out virtually all world knowledge (geography,
history, vocabulary, chemistry, biology, physics. . . ), including any plausible
basis for problematic plans and concrete world-oriented competencies. This
conclusion holds even if the kernel-implementation systems might be untrust-
worthy if directly applied to world-oriented tasks.

30.7 Exclusion of problematic content can provide a safe basis for
developing general capabilities

In the familiar AGI threat model, development results in opaque, self-
improving, ill-characterized, but highly-capable systems, and—crucially—the
use of these capabilities is assumed to require that the problematic systems
themselves be applied to a wide range of world tasks. This assumption is
incorrect. As argued above, posited self-improvement capabilities could
instead be re-developed from earlier, non-problematic systems through
a process that leads to diverse systems that compete to perform tasks
that include AI system development. The AI-implementation capacity
of such systems could then be applied to the development of compact
general-learning kernels that will omit representations of problematic
knowledge and goals. This strategy is technology-agnostic: It is compatible
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with neural, symbolic, and mixed systems, whether classical or quantum
mechanical; it assumes complete implementation opacity, and relies only on
optimization pressures directed by external affordances.

Because expansion of a general learning kernel would in effect implement
the “research” end of AI R&D automation, the strategy outlined above could
provide a clean basis for any of a range of development objectives, whether
in an AGI-agent or CAIS model of general intelligence. This approach is
intended to address a particular class of scenarios in which development has
led the edge of a cliff, and is offered as an example, not as a prescription:
Many variations would lead to similar results, and ongoing application of
the underlying principles would avoid classic threat models from the start.
These safety-relevant principles are closely aligned with current practice in
AI system development.1

Further Reading

• Section 1: R&D automation provides the most direct path to
an intelligence explosion

• Section 5: Rational-agent models place intelligence in an
implicitly anthropomorphic frame

• Section 8: Strong optimization can strongly constrain AI capabilities, behavior,
and effects

• Section 9: Opaque algorithms are compatible with
functional transparency and control

• Section 10: R&D automation dissociates recursive improvement from AI agency
• Section 11: Potential AGI-enabling technologies also enable comprehensive

AI services
• Section 36: Desiderata and directions for interim AI safety guidelines

1. Section 36: Desiderata and directions for interim AI safety guidelines
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31 Supercapabilities do not entail “superpowers”

By definition, any given AI system can have “cognitive superpowers”

only if others do not, hence (strategic) superpowers should be clearly

distinguished from (technological) supercapabilities.

31.1 Summary

Superintelligence (Bostrom 2014) develops the concept of “cognitive superpow-
ers” that potentially include intelligence amplification, economic production,
technology development, strategic planning, software hacking, or social ma-
nipulation. These “superpowers”, however, are defined in terms of potential
strategic advantage, such that “at most one agent can possess a particular su-
perpower at any given time”. Accordingly, in discussing AI strategy, we must
take care not to confuse situation-dependent superpowers with technology-
dependent supercapabilities.

31.2 AI-enabled capabilities could provide decisive strategic
advantages

Application of AI capabilities to AI R&D1 could potentially enable swift
intelligence amplification and open a large capability gap between first- and
second-place contenders in an AI development race. Strong, asymmetric
capabilities in strategically critical tasks (economic production, technology
development, strategic planning, software hacking, or social manipulation)
could then provide decisive strategic advantages in shaping world outcomes
(Bostrom 2014, p.91–104).

31.3 Superpowers must not be confused with supercapabilities

Bostrom (2014, p.93) introduces the concept of a “superpower” as a property
of “a system that sufficiently excels” in one of the strategically critical tasks,
stating that “[a] full-blown superintelligence would greatly excel at all of
these tasks,” and later explains that “excels” must be understood in a relative
sense that entails a strong situational asymmetry (Bostrom 2014, p.104):

1. Section 10: R&D automation dissociates recursive improvement from AI agency
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[. . .] superpowers [. . .] are possessed by an agent as superpowers only if
the agent’s capabilities in these areas substantially exceed the combined
capabilities of the rest of the global civilization [hence] at most one
agent can possess a particular superpower at any given time.

To avoid confusion, it is important to distinguish between strategically rel-
evant capabilities far beyond those of contemporaneous, potentially super-
intelligent competitors (“superpowers”), and capabilities that are (merely)
enormous by present standards (“supercapabilities”). Supercapabilities are
robust consequences of superintelligence, while superpowers—as defined—
are consequences of supercapabilities in conjunction with a situation that
may or may not arise: strategic dominance enabled by strongly asymmet-
ric capabilities. In discussing AI strategy, we must take care not to confuse
prospective technological capabilities with outcomes that are path-dependent
and potentially subject to choice.

Further Reading

• Section 20: Collusion among superintelligent oracles can readily be avoided
• Section 32: Unaligned superintelligent agents need not threaten world stability

32 Unaligned superintelligent agents need not
threaten world stability

A well-prepared world, able to deploy extensive, superintelligent-level

security resources, need not be vulnerable to subsequent takeover by

superintelligent agents.

32.1 Summary

It is often taken for granted that unaligned superintelligent-level agents could
amass great power and dominate the world by physical means, not necessar-
ily to human advantage. Several considerations suggest that, with suitable
preparation, this outcome could be avoided:

• Powerful SI-level capabilities can precede AGI agents.
• SI-level capabilities could be applied to strengthen defensive stability.
• Unopposed preparation enables strong defensive capabilities.
• Strong defensive capabilities can constrain problematic agents.

146



In other words, applying SI-level capabilities to ensure strategic stability
could enable us to coexist with SI-level agents that do not share our values.
The present analysis outlines general prospects for an AI-stable world, but
necessarily raises more questions than it can explore.

32.2 General, SI-level capabilities can precede AGI agents

As has been argued elsewhere, the R&D-automation/AI-services model of
recursive improvement and AI applications challenges the assumption1 that
the pursuit of general, SI-level AI capabilities naturally or necessarily leads to
classic AGI agents. Today, we see increasingly automated AI R&D applied to
the development of AI services, and this pattern will (or readily could) scale
to comprehensive, SI-level AI services that include the service of developing
new services. By the orthogonality thesis (Bostrom 2014), high-level AI services
could be applied to more-or-less any range of tasks.

32.3 SI-level capabilities could be applied to strengthen
defensive stability

World order today—from neighborhood safety to the national security—is
imperfectly implemented through a range of defensive services, e.g., local
surveillance, self-defense, and police; military intelligence, arms control,
and defensive weapon systems. A leading strategic problem today is the
offensive potential of nominally defensive systems (deterrence, for example,
relies on offensive weapons), engendering the classic “security dilemma” and
consequent arms-race dynamics.

Bracketing thorny, path-dependent questions of human perceptions, pref-
erences, objectives, opportunities, and actions, one can envision a state of
the world in which SI-level competencies have been applied to implement
impartial, genuinely defensive security services. Desirable implementation
steps and systemic characteristics would include:

1. Preparatory, SI-level red-team/blue-team design competition
2. Anticipatory deployment of well-resourced, SI-level security services
3. Ongoing application of effective, physically-oriented surveillance
4. Ongoing application of effective, physically-oriented security measures

1. Section 12: AGI agents offer no compelling value
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In other words, one can envision an AI-stable world in which well-prepared, SI-
level systems are applied to implement services that ensure physical security
regardless of the preferences of unaligned or hostile actors. (Note that this
does not presuppose a solution to AGI alignment: AI-supported design and
implementation1 of policies for security services2 need not be equivalent to
utility maximization by an AGI agent.3)

32.4 Unopposed preparation enables strong defensive
capabilities

A background assumption in this discussion is that, given access to SI-level
capabilities, potentially enormous resources (indeed, literally astronomical)
could be mobilized to achieve critical civilizational goals that include AGI-
compatible strategic stability. In other words, we can expect civilizations as a
whole to pursue convergent instrumental goals (Bostrom 2014, p.109), and to
apply the resulting capabilities.

In this connection, recall that what Bostrom (2014, p.93) terms “superpow-
ers” are contextual, being properties not of agents per se,4 but of agents that
have an effective monopoly on the capability in question (Bostrom 2014, p.104):
In a prepared world, mere superintelligence would not confer superpowers.
(Regarding the “hacking superpower” (Bostrom 2014, p.94), note that, even to-
day, practical operating systems can provide mathematically provable, hence
unhackable, security guarantees.5)

32.5 Strong defensive capabilities can constrain problematic
agents

The above points offer only an abstract sketch of a development process and
objective, not a map of a road or a destination. A closer look can help to clarify
key concepts:

1. Section 26: Superintelligent-level systems can safely provide
design and planning services

2. Section 27: Competitive pressures provide little incentive to transfer strategic decisions
to AI systems

3. Section 23: AI development systems can support effective human guidance

4. Section 31: Supercapabilities do not entail “superpowers”

5. https://sel4.systems/
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1) Preparatory, SI-level red-team/blue-team design competition can ex-
plore potential attacks while exploring the conditions necessary for security
services to block attack capabilities with an ample margin of safety. Adversar-
ial exercises could readily employ physical simulations that are qualitatively
biased to favor hypothetical attackers, while assigning arbitrarily large, highly-
asymmetric quantitative advantages to proposed security services. As noted
above, enormous resources could potentially be mobilized to support SI-level
exploration of hypothetical red-team threats and proposed blue-team security
measures; thorough exploration would call for a good working approximation
to what Bostrom (2014, p.229) terms “technological completion”, at least in a
design sense.

2) Anticipatory deployment of well-resourced, SI-level security services
would implement systems that reflect the results of stringent red-team/blue-
competitions, and hence would employ more-than-adequate physical and
computational resources. Note that preparatory, selective development and
deployment of security systems strongly embodies what Bostrom (2014, p.230)
terms “differential technology development”.

3) Ongoing application of effective, physically-oriented surveillance
calls for collection of information sufficient to establish reliable (yet not
excessively conservative) upper bounds on the scope of potentially threatening
physical capabilities of potentially untrustworthy actors. Recognition of
threats can be informed by risk-averse generalizations of worst-case red-team
strategies.

4) Ongoing application of effective, physically-oriented security measures
calls for the application of ample (yet not unnecessarily conservative) re-
sources to forestall potential threats; policies can be informed by amply (yet
not excessively conservative) risk-averse generalizations of robust blue-team
security measures. Crude security measures might require either strong
interventions or stringent constraints on actors’ physical resources; well-
designed security measures could presumably employ milder interventions
and constraints, optimized for situation-dependent acceptability conditioned
on global effectiveness.
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32.6 This brief analysis necessarily raises more questions than it
can explore

The concept of impartial and effective AI-enabled security services raises
questions regarding the deep underpinnings of a desirable civilizational order,
questions that cannot be explored without raising raising further questions
at levels that range from security policies and physical enforcement to the
entrenchment of constitutional orders and the potential diversity of coexisting
frameworks of law. Prospects for a transition to a secure, AI-stable world
raise further questions regarding potential paths forward, questions that
involve not only technological developments, but ways in which the perceived
interests and options of powerful, risk-averse actors might align well enough
to shape actions that lead to widely-approved outcomes.

32.7 A familiar alternative scenario, global control by a
value-aligned AGI agent, presents several difficulties

Discussions of superintelligence and AI safety often envision the development
of an extremely powerful AI agent that will take control of the world and
optimize the future in accord with human values. This scenario presents
several difficulties: It seems impossible to define human values in a way
that would be generally accepted, impossible to implement systems that
would be trusted to optimize the world, and difficult to take control of the
world (whether openly or by attempted stealth) without provoking effective,
preemptive opposition from powerful actors. Fortunately, as outlined above,
the foundational safety challenge—physical security—can be addressed while
avoiding these problems.

Further Reading

• Section 12: AGI agents offer no compelling value
• Section 20: Collusion among superintelligent oracles can readily be avoided
• Section 23: AI development systems can support effective human guidance
• Section 26: Superintelligent-level systems can safely provide

design and planning services
• Section 27: Competitive pressures provide little incentive to transfer strategic

decisions to AI systems
• Section 31: Supercapabilities do not entail “superpowers”
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33 Competitive AI capabilities will not be boxed

Because the world’s aggregate AI capacity will greatly exceed that of

any single system, the classic “AI confinement” challenge (with AI in a

box and humans outside) is better regarded as an idealization than as a

concrete problem situation.

33.1 Summary

Current trends suggest that superintelligent-level AI capabilities will emerge
from a distributed, increasingly automated process of AI research and develop-
ment, and it is difficult to envision a scenario in which a predominant portion
of overall AI capacity would (or could) emerge and be confined in “a box”.
Individual systems could be highly problematic, but we should expect that AI
systems will exist in a milieu that enables instantiation of diverse peer-level
systems, a capability that affords scalable, potentially effective mechanisms
for managing threatening AI capabilities.

33.2 SI-level capabilities will likely emerge from incremental
R&D automation

Current trends in machine learning point to an increasing range of super-
human capabilities emerging from extensions of today’s technology base that
emerge from extensions of today’s R&D milieu. Today we see a distributed,
increasingly automated R&D process that employs a heterogeneous toolset to
develop diverse demonstration, prototype, and application systems. Increas-
ingly, we find that AI applications include AI development tools, pointing
the way toward thorough automation of development that would enable
AI progress at AI speed—an incremental model of asymptotically recursive
technology improvement.1

33.3 We can expect AI R&D capacity to be distributed widely,
beyond any “box”

Current methods in machine learning suggest that access to large-scale ma-
chine resources will be critical to competitive performance in AI technology
and applications development. The growing diversity of technologies and
applications (e.g., to vision, speech recognition, language translation, ML

1. Section 10: R&D automation dissociates recursive improvement from AI agency
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architecture design. . . ) speak against the idea that a world-class R&D process
(or its functional equivalent) will someday be embodied a distinct, general-
purpose system. In other words, it is difficult to envision plausible scenarios
in which we find more AI capability “in a box” than in the world outside.

33.4 AI systems will be instantiated together with diverse
peer-level systems

We should expect that any particular AI system will be embedded in an
extended AI R&D ecosystem having aggregate capabilities that exceed its own.
Any particular AI architecture will be a piece of software that can be trained
and run an indefinite number of times, providing multiple instantiations that
serve a wide range of purposes (a very wide range of purposes, if we posit
truly general learning algorithms). As is true today, we can expect that the
basic algorithms and implementation techniques that constitute any particular
architecture will be deployed in diverse configurations, trained on diverse
data, and provide diverse services.1

33.5 The ability to instantiate diverse, highly-capable systems
presents both risks and opportunities for AI safety

Absent systemic constraints, advanced AI technologies will enable the imple-
mentation of systems that are radically unsafe or serve abhorrent purposes.
These prospects can be classed as bad-actor risks that, in this framing, include
actions that incur classic AGI-agent risks.

The almost unavoidable ability to instantiate diverse AI systems at any
given level of technology also offers benefits for AI reliability and safety. In
particular, the ability to instantiate diverse peer-level AI systems enables
the use of architectures that rely on implicitly competitive and adversarial
relationships among AI components, an approach that enables the use of
AI systems to manage other AI systems while avoiding concerns regarding
potential collusion.2 Both competitive and adversarial mechanisms are found
in current AI practice, and scale to a superintelligent level.

Further Reading

• Section 10: R&D automation dissociates recursive improvement from AI agency

1. Section 15: Development-oriented models align with deeply-structured AI systems

2. Section 20: Collusion among superintelligent oracles can readily be avoided
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• Section 15: Development-oriented models align with deeply-structured AI sys-
tems

• Section 20: Collusion among superintelligent oracles can readily be avoided

34 R&D automation is compatible with both strong
and weak centralization

Advances in AI R&D automation are currently distributed across many

independent research groups, but a range of pressures could potentially

lead to strong centralization of capabilities.

34.1 Summary

AI R&D is currently distributed across many independent research groups,
and the architecture of R&D automation is compatible with continued decen-
tralized development. Various pressures tend to favor greater centralization of
development in leading organizations, yet centralization per se would neither
force nor strongly favor a qualitative change in the architecture of R&D tasks.
Alternative distributions of capabilities across organizations could provide
affordances relevant to AI policy and strategy.

34.2 The R&D automation model is compatible with
decentralized development

State-of-the-art AI research and development is currently decentralized, dis-
tributed across independent groups that operate within a range of primarily
corporate and academic institutions. Continued automation of AI R&D tasks1

will likely increase the advantages provided by proprietary tool-sets, inte-
grated systems, and large-scale corporate resources, yet strong automation is
compatible with continued decentralization.

34.3 Accelerating progress could lead to strong centralization of
capabilities

Fundamental arguments suggest that AI R&D automation provides the most
direct path2 to steeply accelerating, AI-enabled progress in AI technologies.

1. Section 10: R&D automation dissociates recursive improvement from AI agency

2. Section 1: R&D automation provides the most direct path to
an intelligence explosion
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Steeply accelerating progress, if driven by proprietary, rapidly-advancing
tool sets, could favor the emergence of wide gaps between competing groups,
effectively centralizing strong capabilities in a leader.

34.4 Centralization does not imply a qualitative change in R&D
tasks

Pressures that favor centralization neither force nor strongly favor a qualita-
tive change in the architecture of R&D tasks or their automation. Organiza-
tional centralization, tool-chain integration, and task architecture are distinct
considerations, and only loosely coupled.

34.5 Centralization and decentralization provide differing
affordances relevant to AI policy and strategy

Considerations involving AI policy and strategy may favor centralization of
strong capabilities (e.g., to provide affordances for centralized control), or
might favor the division of complementary capabilities across organizations
(e.g., to provide affordances for establishing cross-institutional transparency
and interdependence). Unlike classic models of advanced AI capabilities as
something embodied in a distinct entity (“the machine”), the R&D automation
model is compatible with both alternatives.

Further Reading

• Section 1: R&D automation provides the most direct path to
an intelligence explosion

35 Predictable aspects of future knowledge can
inform AI safety strategies

AI developers will accumulate extensive safety-relevant knowledge in the

course of their work, and predictable aspects of that future knowledge

can inform current studies of strategies for safe AI development.

35.1 Summary

Along realistic development paths, researchers building advanced AI systems
will gain extensive safety-relevant knowledge from experience with similar
but less advanced systems. While we cannot predict the specific content
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of that future knowledge, we can have substantial confidence regarding its
scope; for example, researchers will have encountered patterns of success
and failure in both development and applications, and will have eagerly
explored and exploited surprising capabilities and behaviors across multiple
generations of AI technology. Realistic models of potential AI development
paths and risks should anticipate that this kind of knowledge will be available
to contemporaneous decision makers, hence the nature and implications of
future safety-relevant knowledge call for further exploration by the AI safety
community.

35.2 Advanced AI systems will be preceded by similar but
simpler systems

Although we cannot predict the details of future AI technologies and systems,
we can predict that their developers will know more about those systems
than we do. In general, the nature of knowledge learned during technology
development is strictly more predictable than the content of the knowledge
itself, hence we can consider the expected scope of future known-knowns
and known-unknowns, and even the expected scope of knowledge regarding
unknown-unknowns—expected knowledge of patterns of ongoing surprises.
Thus, in studying AI safety, it is natural to consider not only our current,
sharply limited knowledge of future technologies, but also our somewhat
more robust knowledge of the expected scope of future knowledge, and of
the expected scope of future knowledge regarding expected surprises. These are
aspects of anticipated contemporaneous knowledge.

35.3 Large-scale successes and failures rarely precede smaller
successes and failures

By design (and practical necessity), low-power nuclear chain reactions pre-
ceded nuclear explosions, and despite best efforts, small aircraft crashed
before large aircraft. In AI, successes and failures of MNIST classification
preceded successes and failures of ImageNet classification, which preceded
successes and failures of machine vision systems in self-driving cars.

In particular, we can expect that future classes of AI technologies that could
yield enormously surprising capabilities will already have produced impres-
sively surprising capabilities; with that experience, to encounter outliers—
surprising capabilities of enormous magnitude—would not be enormously
surprising.
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35.4 AI researchers eagerly explore and exploit surprising
capabilities

Scientists and researchers focused on basic technologies are alert to anoma-
lies and strive to characterize and understand them. Novel capabilities are
pursued with vigor, and unexpected capabilities are celebrated: Notable ex-
amples in recent years include word embeddings that enable the solution
of word-analogy problems by vector arithmetic, and RL systems that learn
the back-cavity multiple-bounce trick in Atari’s Breakout game. Surprising
capabilities will be sought, and when discovered, they will be tested and
explored.

35.5 AI developers will be alert to patterns of unexpected failure

Technology developers play close attention to performance: They instrument,
test, and compare alternative implementations, and track patterns of success
and failure. AI developers seek low error rates and consistent performance in
applications; peculiarities that generate unexpected adverse results are (and
will be) studied, avoided, or tolerated, but not ignored.

35.6 AI safety researchers will be advising (responsible) AI
developers

Several years ago, one could imagine that AI safety concerns might be ig-
nored by AI developers, and it was appropriate to ask how safety-oblivious
development might go awry. AI safety concerns, however, led to the growth
of AI safety studies, which are presently flourishing. We can expect that
safety studies will be active, ongoing, and substantially integrated with the
AI R&D community, and will be able to exploit contemporaneous community
knowledge in jointly developing and revising practical recommendations.

35.7 Considerations involving future safety-relevant knowledge
call for further exploration

Adoption of safety-oriented recommendations will depend in part on their
realism and practicality, considerations that call for a better understanding of
the potential extent of future safety-relevant in the development community.
Studies of the nature of past technological surprises can inform this effort, as
can studies of patterns of development, anticipation, and surprise in modern
AI research.
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We must also consider potential contrasts between past patterns of de-
velopment and future developments in advanced AI. If contemporaneous
computational hardware capacity will (given the development of suitable
software) be sufficient to support broadly superhuman performance,1 then
the potential for swift change will be unprecedented. Contingent on informed
caution and a security mindset, however, the potential for swift change need
not entail unsafe application of capabilities and unprecedented, unavoidable
surprises. To understand how such a situation might be managed, it will be
important to anticipate the growth of safety-relevant knowledge within the
AI development community, and to explore how this knowledge can inform
the development of safety-oriented practices.

Further Reading

• Section 12: AGI agents offer no compelling value
• Section 15: Development-oriented models align with deeply-structured AI sys-

tems
• Section 16: Aggregated experience and centralized learning

support AI-agent applications
• Section 22: Machine learning can develop predictive models of human approval
• Section 24: Human oversight need not impede fast, recursive

AI technology improvement

36 Desiderata and directions for interim AI safety
guidelines

Interim AI safety guidelines should (and could) engage with present practice,
place little burden on practitioners, foster future safety-oriented development,
and promote an ongoing process of guideline development and adoption.

36.1 Summary

Actionable, effective interim AI safety guidelines should:

• Clarify why current AI research is safe,
• Promote continued safety-enabling development practice, and
• Foster ongoing, collaborative guideline development and adoption.

1. Section 40: Could 1 PFLOP/s systems exceed the basic
functional capacity of the human brain?
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Because current AI development work is, in fact, safe with respect to high-level
risks, interim safety guidelines can clarify and codify safety-aligned charac-
teristics of current work while placing little burden on practitioners. Good
practice in current AI R&D tends to align with longer-term safety concerns:
Examples include learning from the exploration of families of architectures
and tasks, then pursuing task-oriented development, testing, and validation
before building complex deployed systems. These practices can contribute
to shaping and controlling AI capabilities across a range of potential devel-
opment paths. Development and adoption of guidelines founded on current
practice could help researchers answer public questions about the safety of
their work while fostering ongoing, collaborative safety research and guideline
extension to address potential longer-term, high-level risks.

36.2 Desiderata

36.2.1 Desideratum: Clarify why current AI research is safe

Current AI research is safe (in a classic x-risk sense), in part because current AI
capabilities are limited, but also because of the way capabilities are developed
and organized. Interim guidelines could clarify and codify aspects of current
practice that promote foundational aspects of safety (see below), and thereby
support efforts to identify safe paths to more powerful capabilities.

36.2.2 Desideratum: Promote continued safety-enabling development
practice

Guidelines that focus on safety-promoting aspects of current practice can be
crafted to place little burden on what is already safety-compliant research;
these same safety-promoting practices can contribute to (though not in them-
selves ensure) avoiding hazards in more challenging future situations.

36.2.3 Desideratum: Foster ongoing, collaborative guideline
development and adoption

Collaboration on actionable interim safety guidelines could promote closer
links between development- and safety-oriented AI researchers, fostering
ongoing collaborative, forward-looking guideline development. Beginning
with readily-actionable guidelines can help to ensure that collaboration goes
beyond theory and talk.
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36.3 Good practice in development tends to align with safety
concerns

Fortunately (though unsurprisingly) good practice in AI development tends
to align with safety concerns. In particular, developers seek to ensure that AI
systems behave predictably, a characteristic that contributes to safety even
when imperfect.

36.4 Exploring families of architectures and tasks builds
practical knowledge

In AI R&D, we see extensive exploration of families of architectures and tasks
through which developers gain practical knowledge regarding the capabilities
and (conversely) limitations of various kinds of systems; practical experience
also yields an understanding of the kinds of surprises to be expected from
these systems. Guidelines that highlight the role of present and future practi-
cal knowledge1 would clarify why current research is known to be safe, and
how good development practice can contribute to future safety.

36.5 Task-oriented development and testing improve both
reliability and safety

Systems for practical applications perform bounded tasks and are subject
to testing and validation before deployment. Task-oriented development,
testing, and validation contribute to knowledge of capabilities and focus
strongly-motivated attention on understanding potential failures and sur-
prises. Guidelines that codify this aspect of current practice would again help
to clarify conditions that contribute to current and future safety.

36.6 Modular architectures make systems more understandable
and predictable

Systems are more easily designed, developed, tested, and upgraded when they
are composed of distinct parts, which is to say, when their architectures are
modular rather than opaque and undifferentiated. This kind of structure is
ubiquitous in complex systems. (And as noted in a recent paper from Google,
“Only a small fraction of real-world ML systems is composed of the ML code
[. . .] The required surrounding infrastructure is vast and complex.” [Sculley

1. Section 35: Predictable aspects of future knowledge can inform AI safety strategies
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et al. 2015]) In particular, the distinction between AI development systems
and their products1 enables a range of reliability (hence safety) oriented
practices.2 The use of modular architectures in current practice again suggests
opportunities for codification, explanation, and contributions to future safety.

36.7 Interim safety guidelines can foster ongoing progress

The absence of current safety risks sets a low bar for the effectiveness of
interim guidelines, yet guidelines organized around current practice can
contribute to the development of guidelines that address more challenging
future concerns. At a technical level, practices that support reliability in
narrow AI components can provide foundations for the safe implementation
of more capable systems. At an institutional level, linking current practice
to longer-term concerns can foster safety-oriented research and development
in several ways: by encouraging understanding and extension of what today
constitutes good practice, by engaging the development community in ongoing
guideline development, and by focusing greater research attention on the
potential connections between development processes and safe outcomes.
Interim guidelines cannot solve all problems, yet could help to set our work
on a productive path.

Further Reading

• Section 10: R&D automation dissociates recursive improvement from AI agency
• Section 12: AGI agents offer no compelling value
• Section 22: Machine learning can develop predictive models of human approval
• Section 23: AI development systems can support effective human guidance
• Section 24: Human oversight need not impede fast, recursive

AI technology improvement
• Section 35: Predictable aspects of future knowledge can inform AI safety strategies

1. Section 15: Development-oriented models align with deeply-structured AI systems

2. Section 16: Aggregated experience and centralized learning
support AI-agent applications
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37 How do neural and symbolic technologies mesh?

Neural networks and symbolic/algorithmic AI technologies are comple-

ments, not alternatives; they are being integrated in multiple ways at

levels that range from components and algorithms to system architec-

tures.

37.1 Summary

Neural network (NN) and symbolic/algorithmic (S/A) AI technologies offer
complementary strengths, and these strengths can be combined in multiple
ways. A loosely-structured taxonomy distinguishes several levels of orga-
nization (components, algorithms, and architectures), and within each of
these, diverse modes of integration—various functional relationships among
components, patterns of use in applications, and roles in architectures. The
complexity and fuzziness of the taxonomy outlined below emphasizes the
breadth, depth, and extensibility of current and potential NN–S/A integration.

37.2 Motivation

One might imagine that neural network and symbolic/algorithmic technolo-
gies are in competition, and ask whether NNs can fulfill the grand promise of
artificial intelligence when S/A methods have failed—will NN technologies
also fall short?

On closer examination, however, the situation looks quite different: NN
and S/A technologies are not merely in competition, they are complementary,
compatible, and increasingly integrated in research and applications. To
formulate a realistic view of AI prospects requires a general sense of the
relationship between NN and S/A technologies. Discussions in this area are
typically more narrow: They either focus on a problem domain and explore
applicable NN–S/A techniques, or they focus on a technique and explore
potential applications. The discussion here will instead outline the expanding
range of techniques and applications, surveying patterns of development that
may help us to better anticipate technological opportunities and the trajectory
of AI development.
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37.3 A crisp taxonomy of NN and S/A systems is elusive and
unnecessary

There is no sharp and natural criterion that distinguishes NN from S/A tech-
niques. For purposes of discussion, one can regard a technique as NN-style to
the extent that it processes numerical, semantically-opaque vector representa-
tions through a series of transformations in which operations and data-flow
patterns are fixed. Conversely, one can regard a technique as S/A-style to the
extent that it relies on entities and operations that have distinct meanings and
functions, organized in space and time in patterns that manifestly correspond
to the structure of the problem at hand—patterns comprising data structures,
memory accesses, control flow, and so on.

Note that S/A implementation mechanisms should not be mistaken for S/A
systems: S/A code can implement NN systems much as hardware implements
software, and just as code cannot usefully be reduced to hardware, so NNs
cannot usefully be reduced to code. In the present context, however, the
systems of greatest interest are those that deeply integrate NN- and S/A-style
mechanisms, or that blur the NN–S/A distinction itself. If taxonomy were
clean and easily constructed, prospects for NN–S/A integration would be less
interesting.

37.4 NN and S/A techniques are complementary

The contrasting strengths of classic S/A techniques and emerging NN tech-
niques are well known: S/A-style AI techniques have encountered difficulties
in perception and learning, areas in which NN techniques excel; NN–style AI
techniques, by contrast, often struggle with tasks like logic-based reasoning—
and even counting—that are trivial for S/A systems.

In machine translation, for example, algorithms based on symbolic rep-
resentations of syntax and semantics fell short of their promise (even when
augmented by statistical methods applied to large corpora); more recently,
neural machine translation systems with soft, opaque representations have
taken the lead, yet often struggle with syntactic structure and the semantics
of logical entailment.

S/A systems are relatively transparent, in part because S/A systems embody
documentable, human-generated representations and algorithms, while NN
systems instead discover and process opaque representations in ways that
do not correspond to interpretable algorithms. The integration of NN tech-
niques with S/A systems can sometimes facilitate interpretability, however:
For example, NN operations may be more comprehensible when considered
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as functional blocks in S/A architectures, while (in sometimes amounts to
a figure-ground reversal) comprehensible S/A systems can operate on NN
outputs distilled into symbols or meaningful numerical values.

37.5 AI-service development can scale to comprehensive, SI-level
services

In discussing how NN and S/A techniques mesh, it will be convenient to draw
rough distinctions between three levels of application:

Components and mechanisms, where NN and S/A building blocks interact
at the level of relatively basic programming constructs (e.g., data access,
function calls, branch selection).

Algorithmic and representational structures, where NN and S/A tech-
niques are systematically intwined to implement complex representations or
behaviors (e.g., search, conditional computation, message-passing algorithms,
graphical models, logical inference).

Systems and subsystems, where individually-complex NN and S/A sub-
systems play distinct and complementary roles at an architectural level (e.g.,
perception and reasoning, simulation and planning).

The discussion below outlines several modes of NN–S/A integration at
each level, each illustrated by an unsystematic sampling of examples from
the literature. No claim is made that the modes are sharply defined, mutually
exclusive, or collectively exhaustive, or that particular examples currently
outperform alternative methods. The focus here is on patterns of integration
and proofs of concept.

37.6 Integration at the level of components and mechanisms

What are conceptually low-level components may have downward- or upward-
facing connections to complex systems: Components that perform simple
functions may encapsulate complex NN or S/A mechanisms, while simple
functions may serve as building blocks in higher-level algorithmic and repre-
sentational structures (as discussed in the following section).
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37.6.1 NNs can provide representations processed by S/A systems:

Classic AI algorithms manipulate representations based on scalars or symbolic
tokens; in some instances (discussed below), systems can retain the architec-
ture of these algorithms—patterns of control and data flow—while exploiting
richer NN representations. For example, the modular, fully-differentiable
visual question answering architecture of (Hu et al. 2018) employs S/A-style
mechanisms (sets of distinct, compositional operators that pass data on a
stack), but the data-objects are patterns of soft attention over an image.

37.6.2 NNs can direct S/A control and data flow:

In AI applications, S/A algorithms often must select execution paths in an
“intelligent” way. NNs can process rich information (e.g., large sets of conven-
tional variables, or NN vector embeddings computed upstream), producing
Boolean or integer values that can direct these S/A choices. NN-directed
control flow is fundamental to the NN-based search and planning algorithms
noted below.

37.6.3 S/A mechanisms can direct NN control and data flow:

Conversely, S/A mechanisms can structure NN computations by choosing
among alternative NN components and operation sequences. Conditional
S/A-directed NN operations enable a range of NN–S/A integration patterns
discussed below.

37.6.4 NNs can learn heuristics for S/A variables:

Reinforcement learning ML mechanisms be applied to what are essentially
heuristic computations (e.g., binary search, Quicksort, and cache replacement)
by computing a value base on a observations (the values of other variables).
This approach embeds ML in a few lines of code to “integrate ML tightly
into algorithms whereas traditional ML systems are build around the model”
(Carbune et al. 2017).

37.6.5 NNs can replace complex S/A functions:

Conventional algorithms may call functions that perform costly numerical
calculations that give precise results when approximate results would suffice.
In the so-called “parrot transformation” (Esmaeilzadeh et al. 2012), an NN is
trained to mimic and replace the costly function. NNs that (approximately)
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model the trajectories of physical systems (Ehrhardt et al. 2017) could play a
similar role by replacing costly simulators.

37.6.6 NNs can employ complex S/A functions:

Standard deep learning algorithms learn by gradient descent on linear vector
transformations composed with simple, manifestly-differentiable element-
wise functions (ReLU, tanh, etc.), yet complex, internally non-differentiable
algorithms can also implement differentiable functions. These functions can
provide novel functionality: For example, a recent deep-learning architecture
(OptNet) treats constrained, exact quadratic optimization as a layer, and can
learn to solve Sudoku puzzles from examples (Amos and Kolter 2017). When
considered as functions, the outputs of complex numerical models of physical
systems can have a similar differentiable character.

37.6.7 S/A algorithms can extend NN memory:

Classic NN algorithms have limited representational capacity, a problem that
becomes acute for recurrent networks that must process long sequences of
inputs or represent an indefinitely large body of information. NNs can be
augmented with scalable, non-differentiable (hard-attention) or structured
memory mechanisms (Sukhbaatar et al. 2015; Chandar et al. 2016) that enable
storage and retrieval operations in an essentially S/A style.

37.6.8 S/A data structures can enable scaling of NN representations:

Data structures developed to extend the scope of practical representations in
S/A systems can be adapted to NN systems. Hash tables and tree structures
can support sparse storage for memory networks, for example, and complex
data structures (octrees) enable generative convolutional networks to output
fine-grained 3D representations that would otherwise require impractically
large arrays (Tatarchenko, Dosovitskiy, and Brox 2017); access to external
address spaces has proved critical to solving complex, structured problems
(Graves et al. 2016). Brute-force nearest-neighbor lookup (e.g., in NN embed-
ding spaces) is widely used in single-shot and few-shot learning (see below);
recent algorithmic advances based on neighbor graphs enable retrieval of near
neighbors from billion-scale data sets in milliseconds (Fu, Wang, and Cai
2017).
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37.6.9 S/A mechanisms can template NN mechanisms:

In a more abstract relationship between domains, S/A-style mechanisms
can be implemented in a wholly differentiable, NN form. Examples include
pointer networks (Vinyals, Fortunato, and Jaitly 2015) that (imperfectly) solve
classic S/A problems such as Traveling Salesman and Delaunay triangula-
tion, as well as differentiable stacks that can perform well on NLP problems
(e.g., syntactic transformations [Grefenstette et al. 2015] and dependency
parsing [Dyer et al. 2015]) commonly addressed by recursive, tree-structured
algorithms in S/A systems.

37.7 Integration at the level of algorithmic and representational
structures

Higher-level integration of NN and S/A mechanisms can typically be viewed
as patterns of interleaved NN and S/A operations, sometimes with substantial,
exposed complexity in one or both components.

37.7.1 S/A algorithms can extend NN inference mechanisms:

S/A mechanisms are often applied to decode NN outputs. For example,
beam search in is a classic algorithm in symbolic AI, and is applied in neural
machine translation systems to select sequences of symbols (e.g., words) based
on soft distributions over potential sequence elements. In another class of
algorithms, S/A algorithms are applied to find near-neighbors among sets
of vector outputs stored in external memory, supporting one- and few-shot
learning in classifiers (Vinyals et al. 2016; Snell, Swersky, and Zemel 2017).

37.7.2 NNs can guide S/A search:

Both search over large spaces of choices (Go play) and large bodies of data (the
internet ) and are now addressed by traditional S/A methods (Monte Carlo tree
search [Silver et al. 2016], large-scale database search [Clark 2015]) guided by
NN choices. Recent work has integrated tree-based planning methods with
NN “intuition” and end-to-end learning to guide agent behaviors (Anthony,
Tian, and Barber 2017; Farquhar et al. 2017; Guez et al. 2018).

37.7.3 S/A graphical models can employ NN functionality:

An emerging class of graphical models—message-passing NNs—represents
both node states and messages as vector embeddings. Message-passing NNs
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share the discrete, problem-oriented structures of probabilistic graphical mod-
els, but have found a far wider range of applications, including the prediction
of molecular properties (Gilmer et al. 2017), few-shot learning (Garcia and
Bruna 2017), and inferring structured representations (Johnson et al. 2016),
as well as algorithms that outperform conventional loopy belief propagation
(Yoon et al. 2018), and others that can infer causality from statistical data beyond
the limits that might be suggested by Pearl’s formalism (Goudet et al. 2017).
Vicarious has demonstrated integration of perceptual evidence through a
combination of NN-level pattern recognition and loopy graphical models:
“Recursive Cortical Networks” can generalize far better than conventional
NNs, and from far less training data (George et al. 2017).

37.7.4 S/A mechanisms can structure NN computation:

S/A mechanisms are used both to construct specified graphs and to exe-
cute corresponding message-passing algorithms, while specification of graph-
structured NNs is a task well-suited to mixed NN and S/A mechanisms. For
example, S/A and NN mechanisms have been interleaved to compose and
search over alternative tree-structured NNs that implement generative models
of 3D structures (Jun Li et al. 2017). In a very different example (a visual
question-answering task), an S/A parsing mechanism directs the assembly of
question-specific deep networks from smaller NN modules (Hu et al. 2018);
see also Andreas et al. (2016). A similar strategy is employed in the Neural
Rule Engine (Li, Xu, and Lu 2018), while Yi et al. (2018) employs NN mecha-
nisms to parse scenes and questions into symbolic representations that drive
a symbolic execution engine.

37.7.5 NNs can produce and apply S/A representations:

NN mechanisms can learn discrete, symbol-like representations useful in
reasoning, planning, and predictive learning (van den Oord, Vinyals, and
Kavukcuoglu 2017; Raiman and Raiman 2018), including string encodings
of molecular-structure graphs for chemical synthesis (Segler, Preuß, and
Waller 2017) and drug discovery (Merk et al. 2018). S/A representations can
enforce a strong inductive bias toward generalization; for example, deep RL
systems can formulate and apply symbolic rules (Garnelo, Arulkumaran, and
Shanahan 2016), and NN techniques can be combined with inductive logic
programming to enable the inference of universal rules from noisy data (Evans
and Grefenstette 2018).
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37.7.6 S/A algorithms can template NN algorithms:

S/A representations can readily implement geometric models with parts,
wholes, and relationships among distinct objects. In recent NN architectures,
“capsules” (Sabour, Frosst, and Hinton 2017) and similar components (Liao
and Poggio 2017) can both support image recognition and play a symbol-
like role in representing part-whole relationships; architectures that embody
relation-oriented priors can both recognize objects and reason about their
relationships (Hu et al. 2018) or model their physical interactions (Battaglia
et al. 2016; Chang et al. 2016). The neural architectures that accomplish
these tasks follow (though not closely!) patterns found in S/A information
processing. More broadly, there is a recognized trend of learning differentiable
versions of familiar algorithms (Guez et al. 2018).

37.7.7 NNs can learn S/A algorithms:

In neural program induction, NNs are trained to replicate the input-output
behavior of S/A programs. Several architectures (e.g., the Neural Turing
Machine [Graves, Wayne, and Danihelka 2014], Neural GPU [Kaiser and
Sutskever 2015], and Neural Programmer [Neelakantan, Le, and Sutskever
2015]; reviewed in Kant [2018]) have yielded substantial success on simple al-
gorithms, with (usually imperfect) generalization to problem-instances larger
than those in the training set.

37.7.8 NNs can aid S/A program synthesis:

Automatic programming is a long-standing goal in AI research, but progress
has been slow. Mixed S/A–NN methods have been applied to program synthe-
sis (Yin and Neubig 2017; Singh and Kohli 2017; Abolafia et al. 2018), with
increasing success (reviewed in (Kant 2018)). Potential low-hanging fruit in-
cludes adaptation of existing source code (Allamanis and Brockschmidt 2017)
and aiding human programmers by code completion (Jian Li et al. 2017); au-
tomating the development of glue code would facilitate integration of existing
S/A functionality with other S/A and NN components.

We can anticipate that advances in graph NNs will facilitate the exploitation
of richer structures in code, which has traditionally centered on narrower
syntactic representations. Structures latent in S/A code, but to date not
explored in conjunction, include not only abstract syntax trees, data types,
and function types, but control and data flow graphs (May 2018 update: see
Allamanis, Brockschmidt, and Khademi [2018]).
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37.7.9 NNs can aid automated theorem proving:

Automated theorem proving systems perform heuristic search over potential
proof trees, and deep-learning methods have been applied to improve premise
selection (Irving et al. 2016; Kaliszyk, Chollet, and Szegedy 2017). Progress
in automated theorem proving (and proof assistants) could facilitate the
development of provably correct programs and operating systems (Klein et
al. 2014).

37.7.10 S/A mechanisms can support NN architecture and
hyperparameter search:

New tools for architecture and hyperparameter search are accelerating NN
development by discovering new architectures (Zoph and Le 2016; Pham et
al. 2018) and optimizing hyperparameters (Jaderberg et al. 2017) (a key task in
architecture development). Leading methods in architecture search apply NN
or evolutionary algorithms to propose candidate architectures, while using an
S/A infrastructure to construct and test them.

37.8 Integration at the level of systems and subsystems

Integration at the level of systems and subsystems extends the patterns already
discussed, combining larger blocks of NN and S/A functionality.

37.8.1 NNs can support and ground S/A models:

Perceptual processing has been chronically weak in S/A artificial intelligence,
and NN techniques provide a natural complement. NN-based machine vision
applications in robotics and vehicle automation are expanding (Steger, Ulrich,
and Wiedemann 2007), and NN-based modeling can go beyond object recog-
nition by, for example, enabling the inference of physical properties of objects
from video (Watters et al. 2017). With the integration of NN perception and
symbolic representations, symbol-systems can be grounded.

37.8.2 S/A representations can direct NN agents:

In recent work, deep RL has been combined with symbolic programs, enabling
the implementation of agents that learn correspondences between programs,
properties, and objects through observation and action; these capabilities can
be exploited in systems that learn to ground and execute explicit, human-
written programs (Denil et al. 2017). The underlying principles should gen-
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eralize widely, improving human abilities to inform, direct, and understand
behaviors that exploit the strengths of deep RL.

37.8.3 NNs can exploit S/A models and tools:

Looking forward, we can anticipate that NN systems, like human beings,
will be able to employ state-of-the-art S/A computational tools, for example,
using conventional code that implements physical models, image rendering,
symbolic mathematics and so on. NN systems can interact with S/A systems
though interfaces that are, at worst, like those we use today.

37.8.4 NN and S/A models can be integrated in cognitive architectures:

At a grand architectural level, AI researchers have long envisioned and pro-
posed “cognitive architectures” (Soar, LIDA, ACT-R, CLARION. . . ) intended
to model much of the functionality of the human mind. A recent review
(Kotseruba, Gonzalez, and Tsotsos 2016) identifies 84 such architectures, in-
cluding 49 that are still under active development. Recent work in cognitive
architectures has explored the integration of S/A and NN mechanisms (Besold
et al. 2017), an approach that could potentially overcome difficulties that have
frustrated previous efforts.

37.9 Integration of NN and S/A techniques is a rich and active
research frontier

An informal assessment suggests robust growth in the literature on integration
of NN and S/A techniques. It is, however, worth noting that there are incen-
tives to focus research efforts primarily on one or the other. The most obvious
incentive is intellectual investment: Crossover research requires the applica-
tion of disparate knowledge, while more specialized knowledge is typically
in greater supply for reasons of history, institutional structure, and personal
investment costs. These considerations tend to suggest an undersupply of
crossover research.

There is, however, good reason to focus extensive effort on NN systems that
that do not integrate S/A techniques in a strong, algorithmic sense: We do not
yet know the limits of NN techniques, and research that applies NNs in a rela-
tively pure form—end-to-end, tabula rasa training with S/A code providing
only infrastructure or framework elements—seems the best way to explore
the NN frontier. Even if one expects integrated systems to dominate the world
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of applications, relatively pure NN research may be the most efficient way to
develop the NN building blocks for those applications.

As in many fields of endeavour, it is important to recognize the contrasts be-
tween effective methodologies in research and engineering: In particular, good
basic research explores systems that are novel, unpredictable, and (preferably)
simple, while good engineering favors known, reliable building blocks to
construct systems that are as complex as a task may require. Accordingly,
as technologies progress from research to applications, we can expect to see
increasing—and increasingly eclectic—integration of NN and S/A techniques,
providing capabilities that might otherwise be beyond our reach.

Further Reading

• Section I: Introduction: From R&D automation to comprehensive AI Services
• Section II: Overview: Questions, propositions, and topics

38 Broadly-capable systems coordinate narrower
systems

In both human and AI systems, we see broad competencies built on

narrower competencies; this pattern of organization is a robust feature

of intelligent systems, and scales to systems that deliver broad services

at a superhuman level.

38.1 Summary

In today’s world, superhuman competencies reside in structured organiza-
tions with extensive division of knowledge and labor. The reasons for this
differentiated structure are fundamental: Specialization has robust advan-
tages both in learning diverse competencies and in performing complex tasks.
Unsurprisingly, current AI services show strong task differentiation, but per-
haps more surprisingly, AI systems trained on seemingly indivisible tasks
(e.g., translating sentences) can spontaneously divide labor among “expert”
components. In considering potential SI-level AI systems, black-box abstrac-
tions may sometimes be useful, but these abstractions set aside our general
knowledge of the differentiated architecture of intelligent systems.
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38.2 Today’s superhuman competencies reside in organizational
structures

It is a truism that human organizations can achieve tasks beyond individual
human competence by employing, not just many individuals, but individuals
who perform differentiated tasks using differentiated knowledge and skills.
Adam Smith noted the advantages of division of labor (even in making pins),
and in modern corporations, division of labor among specialists is a necessity.

38.3 Specialization has robust advantages in learning diverse
competencies

The structure of knowledge enables parallel training: Learning competencies
in organic chemistry, financial management, mechanical engineering, and
customer relations, for example, is accomplished by individuals who work in
parallel to learn the component tasks. This pattern of parallel, differentiated
learning works well because many blocks of specialized knowledge have little
mutual dependence. The limited pace of human learning and vast scope of
human knowledge make parallel training mandatory in the human world,
and in machine learning analogous considerations apply. Loosely-coupled
bodies of knowledge call for loosely-coupled learning processes that operate
in parallel.

38.4 Division of knowledge and labor is universal in performing
complex tasks

As with learning, parallel, specialized efforts have great advantages in per-
forming tasks. Even setting aside human constraints on bandwidth and
representational power, there would be little benefit in attempting to merge
day-to-day tasks in the domains of organic chemistry, financial management,
mechanical engineering, and customer relations. Both information flow and
knowledge naturally cluster in real-world task structures, and the task of cross-
task management (e.g., in developing and operating a chemical-processing
system) has only limited overlap with the information flows and knowledge
that are central to the tasks that must be coordinated. To implement a com-
plex, inherently differentiated task in a black-box system is to reproduce the
task structure inside the box while making its organization opaque.
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38.5 Current AI services show strong task differentiation

It goes without saying that current AI systems are specialized: Generality is a
challenge, not a default. Even in systems that provide strong generalization
capacity, we should expect to see diminishing returns from attempts to apply
single-system generalization capacity to the full scope and qualitative diversity
of human knowledge. Indeed, considering the nature of training and com-
putation, it is difficult to imagine what “single-system generalization” could
even mean on that scale.

38.6 AI systems trained on seemingly indivisible tasks learn to
divide labor

Task specialization can emerge spontaneously in machine learning systems.
A striking recent example is a mixture-of-experts model employed in a then
state-of-the art neural machine translation system to enable 1000x improve-
ments in model capacity (Shazeer et al. 2017). In this system, a managerial
component delegates the processing of sentence fragments to “experts” (small,
architecturally undifferentiated networks), selecting several from a pool of
thousands. During training, experts spontaneously specialize in peculiar,
semantically- and syntactically-differentiated aspects of text comprehension.
The incentives for analogous specialization and task delegation can only grow
as tasks become wider in scope and less tightly coupled.

38.7 Black-box abstractions discard what we know about the
architecture of systems with broad capabilities

Appropriate levels of abstraction depend on both our knowledge and our
purpose. If we want to model the role of Earth in the dynamics of the Solar
System, it can be treated as a point mass. If we want to model Earth as
a context for humanity, however, we also care about its radius, geography,
geology, climate, and more—and we have substantial, useful knowledge of
these. Likewise, for some purposes, it can be appropriate to model prospective
AI systems as undifferentiated, black-box pools of capabilities. If we want to
understand prospective AI systems in the context of human society, however,
we have strong practical reasons to apply what we know about the general
architecture of systems that perform broad tasks.

Further Reading

• Section 12: AGI agents offer no compelling value
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• Section 15: Development-oriented models align with deeply-structured AI sys-
tems

• Section 21: Broad world knowledge can support safe task performance
• Section 28: Automating biomedical R&D does not require defining human wel-

fare
• Section 39: Tiling task-space with AI services can provide general AI capabilities

39 Tiling task-space with AI services can provide
general AI capabilities

Joint embedding of learned vector representations can be used to

map tasks to services, enabling systems to provide general, extensible,

seamlessly-integrated AI capabilities by exploiting the expertise of

relatively narrow AI components.

39.1 Summary

Task-centered models of general AI capabilities highlight the importance of
matching tasks to services, and current practice in deep learning suggests
both conceptual models and concrete approaches. A surprisingly wide range
of operations in deep-learning systems link “tasks” to “services” through
what are—or can be construed as—proximity-based access operations in high-
dimensional vector embedding spaces. Applications of proximity-based access
include single-shot learning, situational memory in RL agents, mixture-of-
experts models, and matching human queries to physical products across
billion-scale product databases. In light of these diverse applications, it is
natural to consider proximity in embedding spaces as a basis for scalable
access to functional components at levels ranging from fine-grained percep-
tual tasks to integrated, high-level services visible to human users. Similar
mechanisms could facilitate the implementation of new services both through
adaptation of existing services and through development of new systems for
novel tasks. Services can be seen tiles covering regions of task-space: Services
of greater or lesser generality correspond to larger or smaller tiles, while
services that adapt or develop services for novel tasks correspond to large
tiles with greater initial latencies and task-specification requirements. The
task-space model provides a conceptual, and perhaps practical, approach to
implementing open-ended, asymptotically-comprehensive AI services as an
effective form of general intelligence.
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39.2 Broad capabilities call for mechanisms that compose diverse
competencies

Current AI systems are notoriously narrow, and expanding the scope of func-
tionality of individual systems is a major focus of research. Despite progress,
vision networks that recognize faces are still distinct from networks that clas-
sify images, which are distinct from networks that parse scenes into regions
corresponding to objects of different kinds—to say nothing of the differences
between any of these and networks architected and trained to play Go or
translate languages or predict the properties of molecules. Because it would
be surprising to find that any single network architecture will be optimal for
proposing Go moves, and identifying faces, and translating English to French,
it is natural to ask how diverse, relatively narrow systems could be composed
to form systems that externally present broad, seamless competencies.

From this perspective, matching tasks (inputs and goals) to services (e.g.,
trained networks) is central to developing broadly-applicable intelligent func-
tionality, whether the required task-matching mechanisms provide coherence
to services developed within a system through the differentiation of subtasks,
or integrate services developed independently. This perspective equally ap-
plicable to “hard-wiring” task-to-service matching at development time and
dynamic matching during process execution, and equally applicable to deep-
learning approaches and services implemented by (for example) Google’s
algorithm-agnostic AutoML. In practice, we should expect to see systems
that exploit both static and dynamic matching, as well as specialized services
implemented by relatively general service-development services (Li and Li
2018). Algorithm selection has long been an active field (Kotthoff 2012; Mısır
and Sebag 2017; Yang et al. 2018).

39.3 The task-space concept suggests a model of integrated AI
services

It is natural to think of services as populating task spaces in which similar ser-
vices are neighbors and dissimilar services are distant, while broader services
cover broader regions. This picture of services and task-spaces can be useful
both as a conceptual model for thinking about broad AI competencies, and as a
potential mechanism for implementing them.

1. As a conceptual model, viewing services as tiling a high-dimensional task
space provides a framework for considering the relationship between
tasks and services: In the task-space model, the diverse properties that
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differentiate tasks are reflected in the high dimensionality of the task
space, services of greater scope correspond to tiles of greater extent, and
gaps between tiled regions correspond to services yet to be developed.

2. As an implementation mechanism, jointly embedding task and service
representations in high dimensional vector spaces could potentially
facilitate matching of tasks to services, both statically during implemen-
tation and dynamically during execution. While there is good reason to
think that joint embedding will be a useful implementation technique,
the value of task spaces as a conceptual model would stand even if
alternative implementation techniques prove to be superior.

The discussion that follows will explore the role of vector embeddings in mod-
ern AI systems, first, to support proposition (1) by illustrating the richness and
generality of vector representations, and, second, to support proposition (2) by
illustrating the range of areas in which proximity-based operations on vector
representations already play fundamental roles in AI system implementation.
With a relaxed notion of “space”, proposition (1) makes intuitive sense; the
stronger proposition (2) requires closer examination.

39.4 Embeddings in high-dimensional spaces provide powerful
representations

This discussion will assume a general familiarity with the unreasonable effec-
tiveness of high-dimensional vector representations in deep learning systems,
while outlining some relevant developments. In brief, deep learning systems
often encode complex and subtle representations of the objects of a domain
(be it an image, video, text, product) as numerical vectors (“embeddings”)
in spaces with tens to thousands of dimensions; the geometric relationships
among embeddings encode relationships among the objects. In particular—
given a successful embedding—similar objects (images of the same class,
texts will similar meanings) map to vectors that are near neighbors in the
embedding space.

Distances between vectors can be assigned in various ways: The most com-
mon in neural networks is cosine similarity, the inner product of vectors
normalized to unit length; in high dimensional spaces, the cosine similarity
between randomly-oriented vectors will, with high probability, be ≈ 0, while
values substantially greater than 0 indicate relatively near neighbors. Dis-
tances in several other spaces have found use: The most common is Euclidian
(L2) norm in conventional vector spaces, but more recent studies have em-
ployed Euclidian distance in toroidal spaces (placing bounds on distances
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while preserving translational symmetry [Ebisu and Ichise 2017]), and dis-
tances in hyperbolic spaces mapped onto the Poincare ball (the hyperbolic
metric is particularly suited to a range of graph embeddings: it allows volume
to grow exponentially with distance, much as the width of a balanced tree
grows exponentially with depth) (Gülçehre et al. 2018; Tifrea, Bécigneul, and
Ganea 2018). Spaces with different metrics and topologies (and their Cartesian
products) may be suited to different roles, and individually-continuous spaces
can of course be disjoint, and perhaps situated in a discrete taxonomic space.

39.5 High-dimensional embeddings can represent semantically
rich domains

In deep neural networks, every every vector that feeds into a fully-connected
layer can be regarded as a vector-space embedding of some representation;
examples include the top-level hidden layers in classifiers and intermediate en-
codings in encoder-decoder architectures. Applications of vector embedding
have been extraordinarily broad, employing representations of:

• Images for classification tasks (Krizhevsky, Sutskever, and Hinton 2012)
• Images for captioning tasks (Vinyals et al. 2014)
• Sentences for translation tasks (Wu et al. 2016)
• Molecules for property-prediction tasks (Coley et al. 2017)
• Knowledge graphs for link-prediction tasks (Bordes et al. 2013)
• Products for e-commerce (J. Wang et al. 2018)

The successful application of vector embedding to diverse, semantically com-
plex domains suggests that task-space models are not only coherent as a
concept, but potentially useful in practice.

39.6 Proximity-based (application/activation/access) can deliver
diverse services

Because applications may use neighborhood relationships to provide diverse
functionality (here grouped under the elastic umbrella of “services”), the
present discussion will refer to these collectively as “PBA operations”, where
“PB” denotes “proximity-based”, and “A” can be interpreted as application of
selected functions, activation of selected features, or more generically, access to
(or retrieval of) selected entities. In each instance, PBA operations compute a
measure of distance between a task representation embedding (“query”) and
a pre-computed embedding (“key”) corresponding to the accessed feature,
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Encoding and decoding vector embeddings

Image classification:
Image→ CNN→ embedding→ projection matrix→ class

(Krizhevsky, Sutskever, and Hinton 2012)

Image captioning:
Image→ CNN→ embedding→ RNN→ caption

(Vinyals et al. 2014)

Language translation:
Sentence→ RNN→ embedding→ RNN→ translation

(Wu et al. 2016)

function, or entity (“value”). In other words, PBA operations employ key/value
lookup of near neighbors in a vector space. As shorthand, one can speak of
values has having positions defined by their corresponding keys.

PBA operations may access multiple entities; when these are (or produce)
embedding vectors, it can be useful to weight and add them (e.g., weighting by
cosine similarity between query and key). Weighted PBA (wPBA) operations
that discard distant values are PBAs in a strict sense, and assigning small
weights to distant entities has a similar effect. The class of wPBA operations
thus includes any matrix multiplication in which input and row (= query
and key) vectors are actually or approximately normalized (see Salimans and
Kingma (2016) and C. Luo et al. (2017)), and the resulting activation vectors
are sparse, e.g., as a consequence of negatively biased ReLU units.

39.7 PBA operations are pervasive in deep learning systems

PBA mechanisms should not be regarded as a clumsy add-on to neural com-
putation; indeed, the above example shows that wPBA operations can be
found at the heart of multilayer perceptrons. A wide range of deep learning
systems apply (what can be construed as) PBA operations to access (what can
be construed as) fine-grained “services” within a neural network computation.
For example, wPBA mechanisms have been used implement not only mixture-
of-experts models (Shazeer et al. 2017; Kaiser, Gomez, et al. 2017), but also
attention mechanisms responsible for wide-ranging advances in deep learning
(Vaswani et al. 2017; Kool, van Hoof, and Welling 2018; Hudson and Manning
2018), including memories of past situations in RL agents (Wayne et al. 2018).
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PBA mechanisms are prominent in single-shot learning in multiple do-
mains (Kaiser, Nachum, et al. 2017), including learning new image classes
from a single example. In the latter application, networks are trained to
map images to an embedding space that supports classification; single-shot
learning is performed by mapping pairs of novel labels and embeddings to
that same embedding space, enabling subsequent classification by retrieving
the label of the best-matching embedding (“best-matching” means closeness,
e.g., cosine similarity) (Vinyals et al. 2016). In one implementation, this is
accomplished by normalizing and inserting the embedding of a new example
in a standard projection matrix (Qi, Brown, and Lowe 2017) (indeed, with
suitable normalization, standard image classification architectures can be
regarded as employing PBA).

39.8 Joint embeddings can link related semantic domains

Embeddings can not only map similar entities to neighboring locations, but
can also align distinct domains such that entities in one domain are mapped to
locations near those of corresponding entities in the other (Frome et al. 2013;
Y. Li et al. 2015; Baltrusaitis, Ahuja, and Morency 2017). Applications have
been diverse:

• Text and images to enable image retrieval (K. Wang et al. 2016)
• Video and text to enable action recognition (Xu, Hospedales, and Gong

2017)
• Sounds and objects in video to learn cross-modal relationships (Arand-

jelović and Zisserman 2017)
• Images and recipes to retrieve one given the other (Salvador et al. 2017)
• Images and annotations to improve embeddings (Gong et al. 2014)
• Queries and factual statements to enable text-based question answering

(Kumar et al. 2015)
• Articles and user-representations to recommend news stories (Okura

et al. 2017)
• Product and user/query representations to recommend products (Zhang,

Yao, and Sun 2017)

39.9 PBA operations can help match tasks to candidate services at
scale

The breadth of applications noted above suggests that AI services and tasks
could be represented and aligned in vector embedding spaces. This observa-
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tion shows that the task-space concept is (at the very least!) coherent, but also
suggests that PBA operations are strong candidates for actually implementing
task-service matching. This proposition is compatible with the use of disjoint
embedding spaces for different classes of tasks, the application of further
selection criteria not well represented by distance metrics, and the use of PBA
operations in developing systems that hard-wire services to sources of streams
of similar tasks.

In considering joint embeddings of tasks and services, one should imagine
joint training to align the representations of both service-requesting and
service-providing components. Such representations would encode the nature
of the task (vision? planning? language?), domain of application (scene?
face? animal?), narrower domain specifications (urban scene? desert scene?
Martian scene?), kind of output (object classes? semantic segmentation? depth
map? warning signal?), and further conditions and constraints (large model
or small? low or high latency? low or high resolution? web-browsing or
safety-critical application?).

Note that exploitation of specialized services by diverse higher-level sys-
tems is in itself a form of transfer learning: To train a service for a task in one
context is to train it for similar tasks wherever they may arise. Further, the
ability to find services that are near-matches to a task can provide trained net-
works that are candidates for fine-tuning, or (as discussed below) architectures
that are likely to be well-suited to the task at hand (Vanschoren 2018).

The concept of joint task-to-service embeddings suggests directions for
experimental exploration: How could embeddings of training sets contribute
to embeddings of trained networks? Distributional shifts will correspond
to displacement vectors in task space—could regularities in those shifts be
learned and exploited in metalearning? Could relationships among task
embeddings guide architecture search? Note that task-to-service relationships
form a bipartite graph in which links can be labeled with performance metrics;
in optimized embeddings, the distances between tasks and services will be
predictive of performance.

PBA operations can be applied at scale: A recently developed graph-based,
polylogarithmic algorithm running can return sets of 100 near neighbors
from sets of >107 vector embeddings with millisecond response times (single
CPU) (Fu, Wang, and Cai 2017). Alibaba employs this algorithm for product
recommendation at a scale of billions of items and customers (J. Wang et
al. 2018).
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39.10 PBA operations can help match new tasks to
service-development services

Fluid matching of tasks to services tends to blunt the urgency of maximiz-
ing the scope of individual models. Although models with more general
capabilities correspond to broader tiles in task-space, the size of individual
tiles does not determine the breadth of their aggregate scope. Advances in
metalearning push in the same direction: A task that maps to a gap between
tiles may still fall within the scope of a reliable metalearning process that can,
on demand, fill that gap (Vanschoren 2018). A particular metalearning system
(characterized by both architecture and training) would in effect constitute
a broad but high-latency tile which has first-use costs that include both data
and computational resources for training. Graphs representing deep learning
architectures can themselves be embedded in continuous spaces (and, remark-
ably, can be optimized by gradient descent [R. Luo et al. 2018]); learning and
exploiting joint embeddings of tasks and untrained architectures would be a
natural step.

In an intuitive spatial picture, metalearning methods enable population of
a parallel space of service-providing services, a kind of backstop for tasks that
pass through gaps between tiles in the primary task-space. Taking this picture
further, one can picture a deeper backstop characterized by yet broader, more
costly tiles: This space would be populated by AI research and development
systems applicable to broader domains; such systems might search spaces of
architectures, training algorithms, and data sets in order to provide systems
suitable for filling gaps in metalearning and primary-task spaces. AI R&D
comprises many subtasks (architecture recommendation, algorithm selection,
etc.) that can again be situated in appropriate task spaces; as with other high-
level services, we should expect high-level AI-development services to operate
by delegating tasks and coordinating other, narrower services.

One may speculate that systems that display flexible, general intelligence
will, internally, link tasks to capabilities by mechanisms broadly similar those
in today’s deep learning systems—which is to say, by mechanisms that can be
construed as employing similarity of task and service embeddings in high-
dimensional vector spaces. What is true of both multi-layer perceptrons and
e-commerce recommendation systems is apt to be quite general.
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39.11 Integrated, extensible AI services constitute general
artificial intelligence

The concept of “general intelligence” calls for a capacity to learn and apply an
indefinitely broad range of knowledge and capabilities, including high-level
capabilities such as engineering design, scientific inquiry, and long-term plan-
ning. The concept of comprehensive AI services is the same: The CAIS model
calls for the capacity to develop and apply an indefinitely broad range of ser-
vices that provide both knowledge and capabilities, again including high-level
services such as engineering design, scientific inquiry, and long-term plan-
ning. In other words, broad, extensible, integrated CAIS in itself constitutes
general artificial intelligence, differing from the familiar AGI picture chiefly
in terminology, concreteness, and avoidance of the long-standing assumption
that well-integrated general intelligence necessarily entails unitary agency.

Further Reading

• Section 1: R&D automation provides the most direct path to
an intelligence explosion

• Section 12: AGI agents offer no compelling value

40 Could 1 PFLOP/s systems exceed the basic
functional capacity of the human brain?

Multiple comparisons between narrow AI tasks and narrow neural tasks

concur in suggesting that PFLOP/s computational systems exceed the

basic functional capacity of the human brain.

40.1 Summary

Neurally-inspired AI systems implement a range of narrow yet recognizably
human-like competencies, hence their computational costs and capabilities
can provide evidence regarding the computational requirements of hypo-
thetical systems that could deliver more general human-like competencies
at human-like speeds. The present analysis relies on evidence linking task
functionality to resource requirements in machines and biological systems,
making no assumptions regarding the nature of neural structure or activity.

Comparisons in areas that include vision, speech recognition, and language
translation suggest that affordable commercial systems (~1 PFLOP/s, cost-
ing $150,000 in 2017) may surpass brain-equivalent computational capacity,

182



perhaps by a substantial margin. Greater resources can be applied to learn-
ing, and the associated computational costs can be amortized across multiple
performance-providing systems; current experience suggests that deep neu-
ral network (DNN) training can be fast by human standards, as measured
by wall-clock time. In light of these considerations, it is reasonable to ex-
pect that, given suitable software, affordable systems will be able to perform
human-level tasks at superhuman speeds.

40.2 Metrics and methodology

40.2.1 AI-technology performance metrics include both task
competencies and task throughput

Hypothetical AI software that could perform tasks with human-level (or
better) competence, in terms of scope and quality, would be constrained by
contemporaneous computational capacity, and hence might perform with
less-than-human task throughput; if so, then restricted hardware capacity
might substantially blunt the practical implications of qualitative advances
in AI software. By contrast, if advanced competencies were developed in
the context of better-than-human hardware capacity (“hardware overhang”),
then the practical implications of qualitative advances in AI software could
potentially be much greater. A better understanding of the computational
requirements for human-level performance (considering both competence
and throughput) would enable a better understanding of AI prospects.

40.2.2 Ratios of hardware capacities and neural capacities (considered
separately) compare apples to apples

The following analysis references an imperfect measure of real-world hard-
ware capacity—floating-point performance—yet because it considers only
ratios of capacity between broadly-similar systems applied to broadly-similar
tasks, the analysis implicitly (though approximately) reflects cross-cutting
considerations such as constraints on memory bandwidth. Thus, despite refer-
encing an imperfect measure of hardware capacity, the present methodology
compares apples to apples.

The neural side of the analysis is similar in this regard, considering only
ratios of (estimates of) neural activity required for task performance relative
to activity in the brain as a whole; these ratio-estimates are imperfect, but
again compare apples to apples. Note that this approach avoids dubious
comparisons of radically different phenomena such as synapse firing and
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logic operations, or axonal signaling and digital data transmission. Neural
structure and function is treated as a black box (as is AI software).

In the end, the quantity of interest (an estimate of machine capacity/brain
capacity) will be expressed as a ratio of dimensionless ratios.

40.2.3 Laboratory-affordable AI hardware capacity reached ~1 PFLOP/s
in 2017.

In 2017, NVIDIA introduced a 960 TFLOP/s “deep-learning supercomputer”
(a 5.6× faster successor to their 2016 DGX-1 machine), at a price of

$150,000; a high-end 2017 supercomputer (Sunway TaihuLight) delivers
~100 PFLOP/s; a high-end 2017 gaming GPU delivers ~0.01 PFLOP/s. The
following discussion will take 1 PFLOP/s as a reference value for current
laboratory-affordable AI hardware capacity.

40.2.4 The computational cost of machine tasks scaled to human-like
throughput is reasonably well defined

Consider machine tasks that are narrow in scope, yet human-comparable
in quality: For a given machine task and implementation (e.g., of image
classification), one can combine a reported computational cost (in FLOP/s)
and reported throughput (e.g., frames per second) to define a cost scaled
to human-like task-throughput (e.g., image classification at 10 frames per
second). Call this the “machine-task cost”, which will be given as a fraction of
a PFLOP/s.

40.2.5 Narrow AI tasks provide points of reference for linking
computational costs to neural resource requirements

AI technologies based on neurally-inspired DNNs have achieved human-
comparable capabilities on narrow tasks in domains that include vision,
speech recognition, and language translation. It is difficult to formulate
accurate, quantitative comparisons that link the known computational costs
of narrow AI tasks to the resource costs of similar (yet never equivalent) neural
tasks, yet for any given task comparison, one can encapsulate the relevant
ambiguities and uncertainties in a single dimensionless parameter, and can
consider the implications of alternative assumptions regarding its value.

A key concept in the following will be “immediate neural activity” (INA),
an informal measure of potentially task-applicable brain activity. As a measure
of current neural activity potentially applicable to task performance, INA is to
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be interpreted in an abstract, information-processing sense that conceptually
excludes the formation of long-term memories (as discussed below, human
and machine learning are currently organized in fundamentally different
ways).

The estimates of task-applied INA in this section employ cortical volumes
that could be refined through closer study of the literature; a point of con-
servatism in these estimates is their neglect of the differential, task-focused
patterns of neural activity that make fMRI informative (Heeger and Ress 2002).
Differential activation of neural tissue for different tasks is analogous to the
use of gated mixture-of-experts models in DNNs: In both cases, a managerial
function selects and differentially activates task-relevant resources from a
potentially much larger pool. In DNN applications (e.g., language translation),
a gated mixture-of-experts approach can increase model capacity by a factor
of 100 to 1000 with little increase in computational cost (Shazeer et al. 2017).

40.2.6 The concept of a “task-INA fraction” encapsulates the key
uncertainties and ambiguities inherent in linking machine-task
costs to brain capacity

The present discussion employs the concept of a “task-INA fraction” (fINA),
the ratio between the INA that would (hypothetically) be required for a neural
system to perform a given machine task and the contemporaneous global INA
of a human brain (which may at a given moment support vision, motor func-
tion, auditory perception, higher-level cognition, etc.). This ratio encapsulates
the main ambiguities and uncertainties in the chain of inference that links
empirical machine performance to estimates of the requirements for human-
equivalent computation. These ambiguities and uncertainties are substantial:
Because no actual neural system performs the same task as a machine, any
comparison of machine tasks to neural tasks can at best be approximate.

For example, convolutional neural networks (CNNs) closely parallel the
human visual system in extracting image features, but the functional overlap
between machine and neural tasks dwindles and disappears at higher levels
of processing that, in CNNs, may terminate with object segmentation and
classification. Potentially quantifiable differences between CNN and human
visual processing include field of view, resolution, and effective frame rate.
More difficult to disentangle or quantify, however, is the portion of visual-
task INA that should be attributed to narrow CNN-like feature extraction,
given that even low-level visual processing is intertwined with inputs that
include feedback from higher levels, together with more general contextual
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and attentional information (Heeger and Ress 2002).
Ambiguities and uncertainties of this kind increase when we consider

tasks such as machine speech transcription (which is partially auditory and
partially linguistic, but at a low semantic level), or language translation that
is human-comparable in quality (Wu et al. 2016), yet employs a very limited
representation of language-independent meaning (Johnson et al. 2016).

40.2.7 Uncertainties and ambiguities regarding values of fINA are
bounded

Despite these uncertainties and definitional ambiguities, there will always be
bounds on plausible values of fINA for various tasks. For, example, given that
visual cortex occupies ~20% of the brain and devotes substantial resources to
CNN-like aspects of feature extraction, it would be difficult to argue that the
value of fINA for CNN-like aspects of early visual processing is greater than
0.1 or less than 0.001. However, rather than emphasizing specific estimates of
fINA for specific machine tasks, the method of analysis adopted here invites
the reader to consider the plausibility of a range of values based on some com-
bination of knowledge from the neurosciences, introspection, and personal
judgment. As we will see, even loose bounds on values of fINA can support
significant conclusions.

For a given task, a useful, empirically-based benchmark for comparison
is the “PFLOP-parity INA faction” (fPFLOP), which is simply the ratio of the
empirical machine-task cost to a 1 PFLOP/s machine capacity. If the lowest
plausible value of fINA lies above the PFLOP-parity INA-faction for that same
task, this suggests that a 1 PFLOP/s machine exceeds human capacity by a
factor of RPFLOP = fINA

fPFLOP
.

40.3 Estimated ratios for specific machine tasks

(Numbers in this section are rounded vigorously to avoid spurious implications of
precision.)

40.3.1 Image-processing tasks vs. human vision tasks:

Systems based on Google’s Inception architecture implement high-level fea-
ture extraction of a quality that supports comparable-to-human performance
in discriminating among 1000 image classes. At a human-like 10 frames per
second, the machine-task cost would be ~10 GFLOP/s (Szegedy et al. 2014),
hence fPFLOP = 10−5.
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Figure 11: Diagram of neural and computational costs as fractions of
total resources (above), scaling the totals to align the fractions (below).

Turning to neural function, consider that visual cortex comprises
>10% of the human brain. If Inception-like high-level feature extraction

were to require the equivalent of ~1% of visual cortex, then fZINA = 10−3,
and RPFLOP = 100.

Speech-recognition tasks vs. human auditory/linguistic tasks: Baidu’s
Deep Speech 2 system can approach or exceed human accuracy in recog-
nizing and transcribing spoken English and Mandarin, and would require
approximately 1 GFLOP/s per real-time speech stream (Amodei et al. 2015).
For this roughly human-level throughput, fPFLOP = 10−6.

Turning to neural function again, consider that task-relevant auditory/se-
mantic cortex probably comprises >1% of the human brain. If the equivalent
of the Deep Speech 2 speech-recognition task were to require 10% of that
cortex, then fINA = 10−3, and RPFLOP = 1000.

Language-translation tasks vs. human language comprehension tasks:
Google’s neural machine translation (NMT) systems have reportedly
approached human quality (Wu et al. 2016). A multi-lingual version of
the Google NMT model (which operates with the same resources) bridges
language pairs through a seemingly language-independent representation
of sentence meaning (Johnson et al. 2016), suggesting substantial (though
unquantifiable) semantic depth in the intermediate processing. Performing
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translation at a human-like rate of one sentence per second would require
approximately 100 GFLOP/s, and fPFLOP = 10−4.

It is plausible that (to the extent that such things can be distinguished)
human beings mobilize as much as 1% of global INA at an “NMT task-level”—
involving vocabulary, syntax, and idiom, but not broader understanding—
when performing language translation. If so, then for “NMT-equivalent trans-
lation,” we can propose fINA = 10−2, implying RPFLOP = 100.

Robotic vision vs. retinal visual processing: Hans Moravec applies a dif-
ferent yet methodologically similar analysis (Moravec 1998) that can serve
as a cross-check on the above values. Moravec noted that both retinal visual
processing and functionally-similar robot-vision programs are likely to be
efficiently implemented in their respective media, enabling a comparison
between the computational capacity of digital and neural systems. Taking
computational requirements for retina-level robot vision as a baseline, then
scaling from the volume of the retina to the volume of the brain, Moravec
derives the equivalent of RPFLOP = ~10 (if we take MIP/s ~ MFLOP/s). Thus,
the estimates here overlap with Moravec’s. In the brain, however, typical
INA per unit volume is presumably less that that of activated retina, and a
reasonable adjustment for this difference would suggest RPFLOP > 100.

40.3.2 It seems likely that 1 PFLOP/s machines equal or exceed the
human brain in raw computation capacity

In light of the above comparisons, all of which yield values of RPFLOP in the
10 to 1000 range, it seems likely that 1 PFLOP/s machines equal or exceed the
human brain in raw computation capacity. To draw the opposite conclusion
would require that the equivalents of a wide range of seemingly substantial
perceptual and cognitive tasks would consistently require no more than an
implausibly small fraction of total neural activity.

The functional-capacity approach adopted here yields estimates that differ
substantially, and sometimes greatly, from estimates based on proposed corre-
spondences between neural activity and digital computation. Sandberg and
Bostrom (Sandberg and Bostrom 2008), for example, consider brain emulation
at several levels: analog neural network populations, spiking neural networks,
and neural electrophysiology; the respective implied RPFLOP values are 1, 10−3,
and 10−7. Again based on a proposed neural-computational correspondence,
Kurzweil suggests the equivalent of RPFLOP = 0.1 (Kurzweil 2005).
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40.4 Even with current methods, training can be fast by human
standards

The discussion above addresses only task performance, but DNN technologies
also invite a comparisons of machine and human learning speeds.

Human beings require months to years to learn to recognize objects, to rec-
ognize and transcribe speech, and to learn vocabulary and translate languages.
Given abundant data and 1 PFLOP/s of processing power, the deep learning
systems referenced above could be trained in hours (image and speech recog-
nition, ~10 exaFLOPs) to weeks (translation, ~1000 exaFLOPs). These training
times are short by human standards, which suggests that future learning
algorithms running on 1 PFLOP/s systems could rapidly learn task domains
of substantial scope. A recent systematic study shows that the scale of efficient
parallelism in DNN training increases as tasks grow more complex, suggest-
ing that training times could remain moderate even as product capabilities
increase (McCandlish et al. 2018).

40.5 Large computational costs for training need not
substantially undercut the implications of low costs for
applications

Several considerations strengthen the practical implications of fast training,
even if training for broad tasks were to require more extensive machine
resources:

• More that 1 PFLOP/s can be applied to training for narrow AI tasks.
• Because broad capabilities can often be composed by coordinating nar-

rower capabilities, parallel, loosely-coupled training processes may be
effective in avoiding potential bottlenecks in learning broader AI tasks.

• In contrast to human learning, machine training costs can be amortized
over an indefinitely large number of task-performing systems, hence
training systems could be costly without undercutting the practical
implications of high task-throughput with affordable hardware.

Human beings (unlike most current DNNs) can learn from single examples,
and because algorithms with broad human-level competencies will (almost
by definition) reflect solutions to this problem, we can expect the applicable
training methods to be more efficient than those discussed above. Progress in
“single-shot learning” is already substantial.

Note that hardware-oriented comparisons of speed do not address the qual-
itative shortcomings of current DNN training methods (e.g., limited general-
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ization, requirements for enormous amounts of training data). The discussion
here addresses only quantitative measures (learning speed, task throughput).

40.6 Conclusions

Many modern AI tasks, although narrow, are comparable to narrow capacities
of neural systems in the human brain. Given an empirical value for the
fraction of computational resources required to perform that task with human-
like throughput on a 1 PFLOP/s machine, and an inherently uncertain and
ambiguous—yet bounded—estimate of the fraction of brain resources required
to perform “the equivalent” of that machine task, we can estimate the ratio
of PFLOP/s machine capacity to brain capacity. What are in the author’s
judgment plausible estimates for each task are consistent in suggesting that
this ratio is ~10 or more. Machine learning and human learning differ in their
relationship to costs, but even large machine learning costs can be amortized
over an indefinitely large number of task-performing systems and application
events.

In light of these considerations, we should expect that substantially super-
human computational capacity will accompany the eventual emergence of a
software with broad functional competencies. On present evidence, scenarios
that assume otherwise seem unlikely.

Further Reading

• Section 12: AGI agents offer no compelling value
• Section 23: AI development systems can support effective human guidance
• Section 24: Human oversight need not impede fast, recursive

AI technology improvement
• Section 36: Desiderata and directions for interim AI safety guidelines

Afterword

While this document was being written, AI researchers have, as the R&D-
automation/AI-services model would predict, continued to automate research
and development processes while developing systems that apply increasingly
general learning capabilities to an increasing range of tasks in bounded do-
mains. Progress along these lines continues to exceed my expectations in
surprising ways, particularly in the automation of architecture search and
training.
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The central concepts presented in this document are intended to be what
Chip Morningstar calls “the second kind of obvious”—obvious once pointed
out, which is to say, obvious in light of facts that are already well-known.
Based on the reception in the AI research community to date, this effort seems
to have largely succeeded.

Looking forward, I hope to see the comprehensive AI-services model of
general, superintelligent-level AI merge into the background of assumptions
that shape thinking about the trajectory of AI technology. Whatever one’s
expectations may be regarding the eventual development of advanced, increas-
ingly general AI agents, we should expect to see diverse, increasingly general
superintelligent-level services as their predecessors and as components of a
competitive world context. This is, I think, a robust conclusion that reframes
many concerns.
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