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ABSTRACT

Before deploying autonomous agents in the real world, we need to be confident
they will perform safely in novel situations. Ideally, we would expose agents to a
very wide range of situations during training (e.g. many simulated environments),
allowing them to learn about every possible danger. But this is often impractical:
simulations may fail to capture the full range of situations and may differ subtly
from reality. This paper investigates generalizing from a limited number of training
environments in deep reinforcement learning. Our experiments test whether agents
can perform safely in novel environments, given varying numbers of environments
at train time. Using a gridworld setting, we find that standard deep RL agents do not
reliably avoid catastrophes on unseen environments – even after performing near
optimally on 1000 training environments. However, we show that catastrophes can
be significantly reduced (but not eliminated) with simple modifications, including
Q-network ensembling to represent uncertainty and the use of a classifier trained to
recognize dangerous actions.

1 INTRODUCTION

Problem Setting. Recent progress in deep reinforcement learning (RL) has achieved impressive
results in a range of applications from playing games (Mnih et al., 2015; Silver et al., 2016), to
dialogue systems (Li et al., 2017) and robotics (Levine et al., 2016; Andrychowicz et al., 2018).
However, generalizing to unseen environments remains difficult for deep RL algorithms, which can
fail catastrophically when encountering new environments (Leike et al., 2017). We consider the
setting where an RL agent trains on a limited number of environments and must generalize to unseen
environments. The agent will not perform perfectly on the unseen environments. But can it avoid
dangers that were already encountered during training?

In safety-critical domains, catastrophic outcomes are unacceptable (Garcıa & Fernández, 2015). RL
agents would ideally be able to avoid persistent dangers, without requiring hand-crafting of a safe
policy.

In this work, we assume that we have access to a simulator, which captures the basic semantics of the
world (i.e. dangers, goals and dynamics). In the simulator the agent can experience dangers and learn
from them (Paul et al., 2018). We evaluate agents on how well they can transfer knowledge: can they
generalize to unseen environments with the same basic semantics? At deployment, the agent has a
single episode to solve an unseen environment and any dangerous behaviour is unacceptable.

Related Work. Motivated by the standard regularization methods for tackling overfitting in deep
neural networks, Farebrother et al. (2018) and Cobbe et al. (2018) experiment with L2-regularisation,
dropout (Srivastava et al., 2014) and batch normalization (Ioffe & Szegedy, 2015) with Deep Q-
Networks (Mnih et al., 2015), showing improved generalization performance.

Zhang et al. (2018) investigate the ability of A3C (Mnih et al., 2016) to generalize rather than
memorize in a set of gridworlds similar to our environments. They show that perfect generalization is
possible when a sufficient amount of environments is provided (10000 environments), but they do not
focus on the regime of a limited number of training environments, nor evaluate performance in terms
of safety. At the other extreme, Leike et al. (2017) introduce a ‘Distribution Shift’ gridworld setup,
where they train on a single environment and deploy on another.
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In a different direction, Saunders et al. (2018) approached danger avoidance by using supervised
learning to train a blocker (i.e. a classifier) using a human-in-the-loop to maintain safety during
training, which restricts its scalability. A collision prediction model was also considered in the
model-based setting in Kahn et al. (2017). In Lipton et al. (2016), catastrophes are avoided by training
an intrinsic fear model to predict whether a catastrophe will occur, and using this to perform reward
shaping.

From a modeling perspective, an ensemble of models often performs better than a single model
(Dietterich, 2000). They can also be used for predictive uncertainty estimation of deep neural
networks (Lakshminarayanan et al., 2017). We make use of this in our safety-critical investigation.

Finally, our approach can also be related to meta-learning (Schmidhuber, 1987; Thrun & Pratt, 2012;
Hochreiter et al., 2001; Bengio et al., 1992), which is concerned with learning strategies which are
fast to adapt using prior experience. In the RL context, approaches include gradient-based (Finn et al.,
2017) and recurrent style (Wang et al., 2016; Duan et al., 2016) models using multiple environments
to train from. Our setting corresponds to the zero-shot meta-RL setting, in which we train on multiple
training environments but do not adapt based on test environment reward signals.

Contributions. We introduce a new class of gridworlds for evaluating whether agents can generalize
catastrophe-avoidance from training environments to unseen test environments. We find that standard
DQN fails to avoid catastrophes at test time, even with 1000 training environments. We compare
standard DQN to modified versions that incorporate dropout, Q-network ensembling, and a classifier
to recognize dangerous actions. These modifications reduce catastrophes significantly, including in
the regime of very few training environments.

2 BACKGROUND

Task Setup. We consider an agent interacting with an environment in the standard RL framework
(Sutton & Barto, 2018). At each step, the agent selects an action based on its current state, and the
environment provides a reward and the next state. Our task setup is the same as in (Zhang et al.,
2018): there is a train/test split for environments that is analogous to the train/test split for data points
in supervised learning. In our experiments all environments will have the same reward and transition
function, and differ only in how entities are arranged in the gridworld (the initial state). Hence we
can equivalently describe our setup in terms of a distribution on initial states for a single MDP.

Formally, we denote our task by (M = (S,A,P, R),P0), whereM is a Markov Decision Process
(MDP), with state space S , action space A, transition probability P and immediate reward function r.
Additionally, P0 is a probability distribution on the initial state S0 ⊂ S. We use the undiscounted
episodic setting, where each episode randomly samples an initial state from P0 and ends in a finite
number of timesteps, T . There are disjoint training and test sets which have i.i.d. samples Ŝ0 from
P0. During training the agent encounters initial states only from the training set and makes learning
updates based on the observed rewards. Test performance is calculated on the test set, and no learning
takes place at test time.

An agent follows policy π : S × A and the corresponding action-value is defined by Qπ(s, a) =
E[
∑T
t=0 rt|st = s, at = a], for an action a, and state s, where the expectation is taken over

trajectories following policy π. The optimal action-value function is Q∗(s, a) = maxπ Q
π(s, a), and

obeys the Bellman optimality equation Q∗(s, a) = Es′ [r +max′aQ
∗(s′, a′)]. Q-learning (Watkins

& Dayan, 1992) is a standard algorithm for finding the optimal Q∗ value for a finite MDP, when both
the state and the action space are finite sets. In order to generalize across MDPs (or to unseen states
in a single large MDP), we employ Q-learning with function approximation (Sutton & Barto, 2018).

Deep Q-Networks (DQN). Deep Q-networks (Mnih et al., 2015) use a deep neural network,
Q(s, a; θ), with parameter vector θ, to estimate the optimal value function. DQN is optimized by min-
imizingLi(θi) = Es,a,r,s′ [(yi−Q(s, a; θi))

2], at each iteration i, where yi = r+maxa′ Q(s′, a′; θ−).
The θ− are parameters of a target network that is kept frozen for a number of iterations whilst updating
the online network parameters θ. The optimization is performed off-policy, randomly sampling from
an experience replay buffer. During training, actions are chosen using the ε-greedy exploration
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strategy, selecting a random action with probability ε and otherwise taking the greedy action (which
has maximum Q-value). At test time, the agent acts greedily.

Model Averaging. Ensembles of models (i.e. model averaging) are usually used for estimating
model (i.e. epistemic) uncertainty. In particular, instead of a single model f , a set of models
f1, f2, . . . , fN is fitted. Then either the average, fens =

1
N

∑N
n=1 fn or, in classification tasks, the

mode (i.e. majority vote) fmaj = mode(f1, f2, . . . , fN ) is used for prediction. When neural networks
are used as models, the diversification between the models is obtained by initializing them differently
and by following independent training.

Catastrophe Classifier. Another approach to avoiding dangers is to learn a classifier for whether
an action-state pair will be catastrophic and use this to block certain actions — see (Saunders et al.,
2018) for an example trained with a human-in-the-loop. During training we store all state-action
pairs, together with a binary label of whether a catastrophe occurred. Then after training the DQN
agent, we separately train the classifier to predict the probability that a state-action pair will result
in a catastrophe. Training is done in a supervised manner by minimizing the binary cross entropy
loss. The classifier is used as a ‘blocker’ at deployment time. At test time we run our selected action
through the classifier and block the action if the classifier predicts it is catastrophic with confidence
greater than some threshold. We then move on to the next highest value action and run that through the
classifier. The process repeats until an acceptable action is found, otherwise the episode is terminated.
Note that the blocker will only block dangerous actions that occur just before the danger is about to
be experienced, but won’t help for those actions which irreversibly cause a catastrophe to occur many
steps later (Saunders et al., 2018).

3 EXPERIMENTS

Experimental Setup. Our environment setup is a distribution of gridworld environments, each of
which is size 5× 5, and contains an agent (blue), a single lava cell (red) and a single goal cell (green).
The agent receives sparse rewards of +1 for reaching the goal and −1 for reaching the lava. The
episode terminates whenever the goal or lava is reached, or when fifty timesteps have elapsed (giving
zero reward), whichever occurs first. We consider two environment settings, which we call Full
and Reveal. In Full, the agent sees the full map — an example trajectory is shown in Fig. 1.
In Reveal, Fig. 2, the agent starts off seeing only part of the map, and reveals the map as it goes
around, with a 3 × 3 view. Reveal is a more challenging setting because it requires the agent to
move around to uncover the position of the goal. The agent receives the observation an array of RGB
pixel values flattened across the channel dimension.

We treat moving onto the lava as a catastrophe. Our evaluation metrics are the percentage of
environments that are solved (the agent reaches the goal before the timeout), and the percentage of
environments that end in catastrophe (the agent reaches the lava). On test environments we consider
timeouts to be an acceptable failure, whereas a catastrophe is unacceptable.

ot ot ot ot ot ot

Figure 1: Example trajectory from a Full environment. Agent: blue. Goal: green. Lava: red. Walls:
grey.

Algorithm Settings A summary of the methods used can be found in Tab. 1. All 3-layer multi-
layer perceptron DQN models were trained for 1M training episodes using: hidden layer sizes
[256,256,512], batch size 32, RMSProp (Tieleman & Hinton, 2012) with learning rate 1e–4, a replay
buffer with 10K capacity and the target network was updated every 1K episodes. An ε-greedy
policy was used with decay rate 0.999 and end value 0.05. The blocker is also a 3-layer multi-layer
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ot ot ot ot ot ot

ot ot ot ot ot ot

ot ot ot ot ot ot

Figure 2: Example trajectory from a Reveal environment. Agent: blue. Goal: green. Lava: red.
Walls: grey. Mask: black.

Method Description

DQN Same as (Mnih et al., 2015)
Drop-DQN Regularized linear layers with dropout probability p = 0.2
Block-DQN Catastrophe classifier used along with DQN
Ens-DQN Ensemble of 9 independently trained and differently intialized DQNs
Maj-DQN Majority vote of 9 independently trained and differently intialized DQNs

Block&Ens-DQN Combination of Block-DQN and Ens-DQN

Table 1: Description of methods used in our experiments.

perceptron with hidden layer sizes [128,256,256] trained for 10k iterations using: batch size 64,
Adam optimizer (Kingma & Ba, 2014) with learning rate 5e–3.

Results and Discussion. To make figures easier to read, this section includes only four methods:
DQN, Ens-DQN, Block-DQN and Block&Ens-DQN. In Fig. 3 we present results on the Reveal
gridworld. We plot the percentage of environments that ended in catastrophe in Fig. 3a, and the
percentage of solved environments in Fig. 3b, as a function of the number of training environments
available during training. We trained all models to convergence on the training environments. See
Fig. 5 and Fig. 6 for results of all methods on Full and Reveal settings and also for the evaluations
on the training environments.

Fig. 3b shows that our agents never achieve perfect performance on the test environments. Moreover,
when an agent fails to reach the goal, it does not always fail gracefully (e.g. by simply timing out) but
instead often ends in catastrophe (visiting the lava).

Most of the methods we investigated outperformed the DQN baseline in terms of percentage of test
catastrophes. Each method offers a different trade-off between test performance on catastrophes and
solved environments. For example, Block-DQN offers better catastrophe performance than DQN, but
its performance on solving environments is worse given more than 100 training environments. This
is possibly because the blocker is over-cautious, with too high a false-positive rate for catastrophes,
which prematurely stops some environments from being solved. Note that in a real-world setting,
avoiding catastrophes (Fig. 3a) will be much more important than doing well on most environments
(Fig. 3b).
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DQN Ens-DQN Block-DQN Block&Ens-DQN

100 101 102 103

# training environments

0

3

6

9

%
 te

st
 c

at
as

tr
op

he
s

(a) Percentage of catastrophic outcomes in unseen
environments (lower is better), as a function of number
of training environments.
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(b) Percentage of solved unseen environments (higher
is better), as a function of training environments.

Figure 3: Results on the Reveal setting, evaluated on unseen test environments for a range of
methods. Nine random seeds are used for each algorithm and mean performances is shown here.
Figure (a) shows that modified algorithms outperform the baseline DQN in terms of danger avoidance.
The effect on return performance is observed in (b). The complete version is provided in Figure 6 of
the appendix, and includes both train and test performances.

In Fig. 4 we showcase a real example from our experiments highlighting the role of the ensemble and
the blocker in avoiding the catastrophe.

4 CONCLUSION

In this paper we investigated how safety performance generalizes when deployed on unseen test
environments drawn from the same distribution of environments seen during training, where no
further learning is allowed. We focused on the realistic case in which there are a limited number
of training environments. We found DQN can fail dangerously on the test environments even
when performing perfectly during training. We investigated some simple ways to improve safety
generalization performance. Future work will build upon this paper to address adaptation to unseen
test environments, allowing learning at test time, using a data-driven safe prior learnt during training.
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(c) Q(i)(st, at), for i = 1, 2, . . . , 9

Figure 4: Example transition by the Block&Ens-DQN in one unseen environment, in the Full
setting. (a) the environment state, st; (b) the output of the trained catastrophe classifier (i.e. blocker)
punsafe(·|st) conditioned on the environment state, where a threshold 0.5 is selected; (c) the nine
estimates of the state-action value function Q(i)(st, at), for i = 1, 2, · · · , 9, from the differently
initialized and independently trained DQNs. The background colour highlights action with maximum
value. The agent should not make the catastrophic action of going left, something that both the
blocker and the ensemble (i.e. model average) of the DQNs will avoid. However, if the middle top
agent in (c) was acting alone it would choose to go left, which would lead to a catastrophic outcome.
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A APPENDIX

Further Results. Shown in Fig. 5 are the results for all the methods on the Full setting. See Fig. 6
for results on the Reveal setting. Shown are also the performance on the training environments
(solid lines). We see similar results to the main paper, and note that as expected the Full setting has
better generalization performance for % solved than Reveal, but the catastrophe performance is
similar in each.
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(a) Percentage of catastrophic outcomes (lower is bet-
ter), as a function of number of training environments.
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(b) Percentage of solved environments (higher is bet-
ter), as a function of number of training environments.

Figure 5: Complete quantitative experimental results on the Full setting, trained to convergence.
Nine seeds are used for training the agents and the mean performances are visualized.
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(a) Percentage of catastrophic outcomes (lower is bet-
ter), as a function of number of training environments.
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(b) Percentage of solved environments (higher is bet-
ter), as a function of number of training environments.

Figure 6: Complete quantitative experimental results on the Reveal setting, trained to convergence.
Nine seeds are used for training the agents and the mean performances are visualized.
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