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Abstract. This paper looks at the convergence property of off-policy
Monte Carlo agents with variable behaviour policies. It presents results
about convergence and lack of convergence. Even if the agent generates
every possible episode history infinitely often, the algorithm can fail to
converge on the correct Q-values. On the other hand, it can converge
on the correct Q-values under certain conditions. For instance, if, during
the n-th episode, the agent has an independent probability of 1/ log(n)
of following the original policy at any given state, then it will converge
on the right Q-values for that policy.
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1 Off-policy Monte Carlo

The Monte Carlo agent is a model-free reinforcement learning agent [3]. These
operate when the environment is a Markov decision process (MDP). In an MDP,
the next observation depends only on the current observation – the state – and
the current action. The full set of state action pairs is designated by S ×A.

In each state, an agent chooses its actions according to a (possibly stochas-
tic) policy π, that is assumed to be Markov. Monte Carlo agents operate by
computing the Q-values of a policy for each state-action pair (s, a), which is
the expected return if the agent choose a in s and subsequently follows π. It
is episodic, exploring the same MDP repeatedly to compute Q-values. Episodic
MDP’s have initial state (where the agent starts an episode) and terminal states
(where the agent ends an episode). This paper focuses on computing Q-values,
not on updating policy choice in consequence.



Assumption 1 In the following, these are always assumed, required for conver-
gence results:

(a) The MDP is finite,
(b) Whatever policy the agent uses, its expected time until reaching a terminal

state is finite.
(c) The rewards after each step have finite expectation (consequently the total

reward has finite expectation).

If an agent is following one policy (e.g., ρ) but wishes to compute the Q-
values of another (e.g., π), it can use the off-policy Monte Carlo algorithm [3].
In this case ρ is the behaviour policy, and π is the evaluation policy.

The algorithm requires that for all state-action pairs (s, a):

π(a|s) > 0⇒ ρ(a|s) > 0. (1)

Because of this requirement, π(a|s) is zero whenever ρ(a|s) is, and the ratio
π(a|s)/ρ(a|s) can be defined as 0 in these cases. The full algorithm is then given
in box 1 – there are two variants, ordinary importance sampling using N(s, a)
(the number of episodes in which the agent has encountered the state-action pair
(s, a)) as the denominator, and weighted importance sampling using W (s, a) (the
sum of the weights) instead [4, 1].

1. For all s ∈ S and a ∈ As, initialise N(s, a), W (s, a) and WR(s, a) to zero.
2. For all n ≥ 1:

(a) Generate an episode history hn by following policy ρ.
(b) The episode data will consist of the state, action chosen in the state, the

immediate reward experienced by the agent.
(c) For each state-action pair (s, a) appearing in the episode history:

i. Let t be the first appearance of (s, a) in the history.
ii. Let Rn(s, a) be the total subsequent reward.

iii. Define

wn(s, a) =
∏
k>t

π(ak|sk)

ρ(ak|sk)
. (2)

iv. Nn(s, a) = Nn−1(s, a) + 1.
v. Wn(s, a) = Wn−1(s, a) + wn(s, a).

vi. WRn(s, a) = WRn−1(s, a) + wn(s, a)R(s, a).

vii. Either Qn(s, a) = WRn(s,a)
Nn(s,a)

, or Qn(s, a) = WRn(s,a)
Wn(s,a)

.

(d) Discard the episode data.

Table 1. Off-policy Monte Carlo algorithm

Note that W (s, a) and N(s, a) have the same expectation: let H(s,a) be the
set of possible histories in the MDP subsequent to (s, a). For h ∈ H(s,a), relabel



the indexes so that h starts in step zero at (s, a). Use ρ and π to denote the
probabilities of certain events conditional on the agent following those policies,
and Eρ and Eπ similarly. Then if In(s, a) denotes the event that (s, a) appears
in the n-the episode,

Eρ(w(s, a)|In(s, a)) =
∑

h∈H(s,a)

ρ(h|In(s, a))
∏
k>0

π(hak |hsk)

ρ(hak |hsk)

=
∑

h∈H(s,a)

ρ(h|In(s, a))
π(h|In(s, a))

ρ(h|In(s, a))

=
∑

h∈H(s,a)

π(h|In(s, a))

= π(H(s,a)|In(s, a)) = 1.

(3)

where hak denotes the k-th action of history h, and hsk denotes the k-th state
of history h.

Then simply note that the value of Nn(s, a) is simply the sum
∑n
j=1 I

j
(s,a),

to see that Nn(s, a) and Wn(s, a) =
∑n
j=1 I

j
(s,a)wn(s, a) have same expectation.

If ρ is fixed, then by sampling only those histories including (s, a), the strong
law of large numbers implies that the ratio of Nn(s, a) and Wn(s, a) converges
to 1 almost surely.

The same argument as in equation (3) shows that

Eρ(wn(s, a)Rn(s, a)|In(s, a)) =
∑

h∈H(s,a)

Rh(s, a)ρ(h|In(s, a))
∏
k>0

π(hak |hsk)

ρ(hak |hsk)

= Eπ(R(s, a)|In(s, a)),

(4)

where Rh(s, a) is the reward along the history h subsequent to the first (s, a).
Thus the expected weighted reward from following policy ρ, is the expected
reward from following policy π.

Assume that agents following ρ would almost surely explore every state-
action pair infinitely often (equivalently, thatNn(s, a)→∞ almost surely). Then
the convergence of ordinary importance sampling is simply a consequence of the
law of large numbers applied to every episode that visits (s, a). Convergence of
weighted importance sampling is a consequence of Corollary 1 below.

2 Varying the behaviour policy

The previous proof, however, assumes that policy ρ is fixed. But what if it varies
from episode to episode?

If π and π′ are two policies, any p ∈ [0, 1] defines the mixed policy:

(1− p)π + pπ′.



This is the policy that, in each state, independently chooses whether to follow
π, with probability 1 − p, and π′, with probability p. Because the decisions are
independent, the mixed policy is Markov if π and π′ are.

A general form for all behaviour policies is then:

Proposition 1. If ρ and π obey the restriction in equation (1), then there exists
a θ ∈ [0, 1) and a policy π′ such that

ρ = (1− θ)π + θπ′.

Proof. Let σ be the maximum across S × A of the ratio π(a|s)/ρ(a|s), in all
cases where ρ(a|s) 6= 0. Then define (1 − θ) = 1/σ. Since π(a|s)/ρ(a|s) ≤ σ,
(1− θ) = 1/σ ≤ ρ(a|s)/π(a|s) and hence ρ(a|s) ≥ (1− θ)π(a|s).

Then define π′ as

π′(a|s) =
1

θ

(
ρ(a|s)− (1− θ)π(a|s)

)
.

To check that this quantity is less than 1, note that ρ(a|s) = 1−
∑
b 6=a ρ(b|s) ≤

1−
∑
b6=a(1− θ)π(b|s) hence that ρ(a|s)− (1− θ)π(a|s) ≤ 1−

∑
b(1− θ)π(b|s) ≤

1− (1− θ) ≤ θ.
Then, by construction, ρ(a|s) = (1− θ)π(a|s) + (θ)π′(a|s). ut

For n being the episode number, define ρn by

ρn = (1− θn)π + θnπ
′
n, (5)

for some π′n and θn ∈ [0, 1). For convenience, further define the set S′ ⊂ S, which
is the set of states s such that ρn(s) 6= π(s).

Then neither off-policy Monte Carlo algorithm need converge:

Theorem 1. Neither off-policy Monte Carlo algorithm following policy ρn need
converge to the correct Q-values for π, even if the agent generates every possible
episode history infinitely often.

The proof is given in Section 3. But that convergence failure need not happen
for all such ρn. A sufficient condition for convergence is:

Theorem 2. Let σn = 1/(1−θn). Assume that σn is eventually non-decreasing,

and that there exists a δ > 0 such that, for large enough n, (σn)
√

log(n) < n1−δ.
Assume that π visits each state-action pair with non-zero probability.

Then both off-policy Monte Carlo algorithms following policy ρn will almost
surely converge on the correct Q-values for π.

This will be proved in Section 4. Note that the requirement for visiting all
(s, a) pairs is for the evaluation policy π – the behaviour policy will also do so,
as a consequence of the conditions above. One immediate corollary of theorem
2 is:

Corollary 1. If θn is bounded above by κ < 1, both off-policy Monte Carlo
algorithms using ρn will converge on the correct Q-values for π, if π visits each
state-action pair with non-zero probability.



Proof. This kind of result has been proved before [5]. The σn are bounded above
by 1/(1−κ), and thus, for any δ, are less than n1−δ for sufficiently large n. Then
Theorem 2 implies the result. ut

A second corollary is:

Corollary 2. If θn = 1 − 1
log(n) , both off-policy Monte Carlo algorithms using

ρn will converge on the correct Q-values for π, if π visits each state-action pair
with non-zero probability.

Proof. Set δ = 1/2, note that σn = log(n), and that

log
(

(σn)
√

log(n)
)

=
√

log(n) log(log(n))

<
log(n)

2
= log(

√
n)

for large enough n. Hence, for large enough n, (σn)
√

log(n) <
√
n = n1−1/2. Then

Theorem 2 implies the result. ut

And a third corollary is:

Corollary 3. Assume π′n(a|s) > r(s,a) whenever π(a|s) > 0, for constants
r(s,a) > 0. Then both off-policy Monte Carlo algorithms using ρn will converge
on the correct Q-values for π, if π visits each state-action pair with non-zero
probability.

Proof. Let r be the minimum value of r(s,a)/π(a|s), across all (s, a) where
π(a|s) > 0. Then π′n can be rewritten as:

π′n = rπ + (1− r)π′′n,

for some π′′n. Similarly ρn can be rewritten as

ρn = (1− (1− r)θn)π + (θn)(1− r)π′′n.

Then note that (θn)(1− r) is bounded above by 1− r, and the result follows by
corollary 1. ut

The rest of this paper will be dedicated to proving theorems 1 and 2.

3 Failure to converge

This Section aims to prove Theorem 1, by constructing a counter-example using
the MDP of figure 1.

Set π(a|s1) = 1, π(a|s2) = π(b|s2) = 1/2, S′ = {s2}, π′n(a|s2) = 0, π′n(b|s2) =
1, and define θn as

θn = 1− 1/(n log(n)).



s3s2s1
a, 0 b, −3

a, −1

Fig. 1. An MDP where the off-policy Monte Carlo algorithms can fail to compute the
correct Q-values.

The probability of the n-th episode history being hb = (s1, a, 0, s2, b,−3, s4)
is greater or equal to 1/2: this history therefore almost surely gets generated
infinitely often.

Now consider the episode history ha = (s1, a, 0, s2, a,−1, s4). It will get gen-
erated during episode n with probability

1

2
· (1− θn) =

1

2n log(n)
.

Each episode is independent and
∑
n 1/(2n log(n)) = ∞, so by the converse

Borel-Cantelli lemma, the episode is generated infinitely often.
Then note that if the history ha is generated during the n-th episode, it is

generated with weight 1/(1 − θn) = n log(n), while the history hb is generated
with weight 1/(1 + θn) = 1/(2 − 1/(n log(n))). Split the weight total Wn(s1, a)
as W a

n (s1, a) + W b
n(s1, a) (the weight totals due to the histories ha and hb re-

spectively). Then ordinary importance sampling will give Qn as:

Qn(s1, a) =
−W a

n (s1, a)− 3W b
n(s1, a)

Nn(s1, a)
, (6)

while weighted importance sampling gives:

Qn(s1, a) =
−W a

n (s1, a)− 3W b
n(s1, a)

W a
n (s1, a) +W b

n(s1, a)
. (7)

In state s1, both actions are equiprobable and independent, so the law of
large numbers implies Nn(s1, a)/n→ 1 almost surely. The W b

n(s1, a) is the sum
of weights less than 1, so W b

n(s1, a) ≤ Nn(s1, a). The probability of hb increases
to 1, and the weights for that history are larger than 1/2 for n ≥ 1. Thus, almost
surely, for sufficiently large n, n/3 and 2n are lower and upper bounds for both
Nn(s1, a) and W b

n(s1, a).
Now pick an n where episode history ha is generated, which must happen

infinitely often. The weight of this history is n log(n), so W a
n (s1, a) ≥ n. In

the limit, this must dominate the n-bounded contributions of Nn(s1, a) and
W b
n(s1, a).
Thus, for a large enough n where ha is generated, equation (6) then gives the

upper bound

Qn(s1, a) ≤ −C log(n),



for some constant C. Conversely, equation (7) gives an upper bound:

Qn(s1, a) ≥ −1− C/ log(n),

for some C.
The correct Q-value for Q(s1, a) under π is clearly (−3−1)/2 = −2, so neither

algorithm can converge to the correct values. Ordinary importance sampling
clearly cannot find the optimal policy (of choosing a in state s2) either. If b had
a reward of 0 instead of a reward of −2, then weighted importance sampling
would fail to find the optimal policy on that MDP, so both algorithms can fail
to find optimal policies.

Remark 1. The lack of convergence can also be proved for θn = 1−1/n, but the
proofs are more involved.

4 Proof of convergence

This Section aims to prove3 Theorem 2.

4.1 Infinite variance

The reason that such mathematical machinery is needed is because, in many
cases, the variance of the reward become infinite. Consider the MDP of figure
2. Two actions are available in s2: action a which, with p probability will return
the agent to state 1 with a reward of 1, and otherwise send them to state s3 with
no reward. And b, which goes straight to s3 with no reward. Set π(a|s1) = 1,
π′n(b|s2) = 1, and θn = 1 − q. The weights are powers of 1/q, ρn(a|s2) = q,
so the expected weighted reward is the correct

∑∞
l=0(l/ql)(pq)l, which is finite.

Since for any random variable X, Var(X) = E(X2)−E(X)2, the variance of the
weighted reward is finite iff the expected squared weighted reward is finite.

Then the expected squared weighted reward is:

∞∑
l=0

(l/ql)2(pq)l =

∞∑
l=0

l2(p/q)l.

And this sum diverges for q ≤ p.

4.2 Proving convergence

This proof will use ordinary importance sampling, then generalise to weighted
importance sampling.

Fix any pair (s, a). Since π must visit that pair with finite probability, there
is an m < |S ×A| and a probability τ > 0 such that an agent following π would

3 The proof will closely mirror the standard proofs of the strong law of large num-
bers, see for instance https://terrytao.wordpress.com/2008/06/18/the-strong-law-
of-large-numbers/
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a, 0

a, 0, 1− q
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Fig. 2. An MDP where the variance of the reward can become infinite within a single
episode.

reach (s, a) in m steps with probability τ . During episode n, an agent following
ρ has a probability at least τ(1 − θn)m of reaching (s, a). For large enough n,√

log(n) > m. Then, by the assumptions of the Theorem, for large enough n,

(σn)m < (σn)
√

log(n) < n1−δ < n.

Hence, for large enough n, τ(1 − θn)m = τ(1/σn) > τ/n, so
∑∞

τ(1 − θn)m =
∞. Then since each episode is independent, the converse Borel-Cantelli lemma
implies that an agent following ρ will almost surely visit (s, a) infinitely often.

How regular will these visits be? The expected number of visits during the
episodes up to the n-th is simply

n∑
j=1

τ(1− θj)m.

For large enough n, σn < n
1−δ√
log(n) and so eventually

τ(1− θn)m > τn
−m 1−δ√

log(n) > n−δ
′
,

for any δ′ > 0. Therefore, for large enough n, the number of visits to (s, a) among
the n episodes must be almost surely greater than

∑n
j=1 j

−δ′ = O(n1−δ
′
). Thus,

for large enough n, Nn(s, a) > n1−δ
′

almost surely.
Let Q∗ be the true Q-value of the MDP under π, and let H be the set of

possible episode histories, ignoring rewards. Let Hl be the set of histories of
length l. Write π(hn) for h ∈ H to designate the probability that episode n has
history h if the agent follows the policy π. Note that since π is fixed, π(hn) is
independent of n (unlike ρn(hn)).

Let η be the policy designed to maximise the expected time the agent spends
in the MDP. This means that η is a Markov policy, as the policy that maximises
the time spent if the agent is in state (s′, a′) does not depend on the agent’s prior
history. Combined with the MDP, η describes a Markov chain, with absorbing
final states. Its transition matrix is of the form:(

P ′ R
0 Id

)
,



for P ′ a transition matrix on the non-absorbing state-action pairs, and Id the
identity matrix on the absorbing ones. Since any episode must terminate with
probability 1, the matrix P ′ has a single maximal real eigenvalue µ′ < 1 [2]. For
large n, the probability that the matrix will not have terminated by the n-th
episode is bounded by (µ′)n. Since η is the policy that maximises the expected
time spent in the MDP, an agent following π cannot expect to stay in MDP
longer than that, so there exists a C ′ such that

π(Hl) ≤ C ′(µ′)l.

Fix any µ′ < µ < 1, then because l2(µ′)l must eventually be less than µl, there
exists a C such that

lπ(Hl) ≤ l2π(Hl) ≤ Cµl.

Let E be the maximal expected reward the agent can generate from a single
state-action pair. Let S be the maximal expected squared reward the agent
can generate from a single state-action pair. Then if Rh is the random variable
denoting the reward generated along history h ∈ Hl,

E (Rh|h) ≤ lE
Var (Rh|h) ≤ E

(
R2
h|h
)
≤ l2S.

Let WRln denote the random variable that returns 0 if the length of the n-th
episode is not l, and the (weighted) reward otherwise, under the assumption that
the agent visits (s, a) during episode n. Therefore:

WRln =
∑
h∈Hl

w(hn)Rhρ(hn).

Note that w(hn) = π(hn)/ρ(hn) ≤ (σn)ih , where ih ≤ l is the number of times
that the agent goes through a state in S′ along h. Then

Eρn
(
WRln

)
=
∑
h∈Hl

w(hn)E (Rh|h) ρn(hn)

=
∑
h∈Hl

E (Rh|h)π(hn),

which is the expected reward from episode histories of length l from an agent
following π. Therefore

∑∞
l=1 Eρn

(
WRln

)
=
∑
h E (Rh|h)π(hn) = Q∗.



The expectation and variance of WRln can be bounded as:

Eρn
(
WRln

)
=
∑
h∈Hl

E (Rh|h)π(hn)

≤ lEπ(Hl)
≤ ECµl

Varρn
(
WRln

)
≤ Eρn

((
WRln

)2)
≤
∑
h∈Hl

E
(

(w(hn)Rh)
2 |h
)
ρ(hn)

≤
∑
h∈Hl

(σn)ihE
(

(Rh)
2 |h
)
π(hn)

≤ π(Hl)(σn)ll2S

≤ SC(µσn)l.

(8)

Redefine C as max(EC,SC) so that these bounds are Cµl and C(µσn)l respec-
tively.

Then define WR<ln =
∑
j<lWRjn and WR≥ln =

∑
j≥lWRjn. Equation (8)

then implies that

Eρn
(
WR≥ln

)
≤ C

∞∑
j=l

µj

≤ Cµl

1− µ

Varρn
(
WR<ln

)
≤

l−1∑
j=1

Varρn
(
WR<ln

)
≤

l−1∑
j=1

C(µσn)j

≤ C(σnµ)l − 1

σnµ− 1

≤ C(σn)l

σnµ− 1

Redefine C as C/(1 − µ) so that the first bound is Cµl. For large enough n,
σnµ− 1 > 1; so, redefining C if needed to cover the finitely many smaller values
of n, the second bound is C(σn)l:

Eρn
(
WR≥ln

)
≤ Cµl

Varρn
(
WR<ln

)
≤ C(σn)l

Let In be the indexing variable that denotes that the agent visited (s, a) during
episode n. By assumption, Nn(s, a) =

∑n
j=1 In(s, a), and this section has shown



that Nn(s, a) > n1−δ
′

for any δ′ > 0 and large enough n. Define

Q≥ln =
1

Nn(s, a)

n∑
j=1

IjWR≥lj

Q<ln =
1

Nn(s, a)

n∑
j=1

IjWR<lj .

Then, since σn are eventually non-decreasing, for any δ′ > 0 and for large
enough n:

Eρn
(
Q≥ln

)
≤ 1

Nn(s, a)

n∑
j=1

IjCµ
l ≤

∑n
j=1 Ij

Nn(s, a)
Cµl ≤ Cµl

Varρn
(
Q<ln

)
≤ 1

Nn(s, a)2

n∑
j=1

CIj(σj)
l ≤ C

Nn(s, a)
(σn)l ≤ C

n1−δ′
(σn)l.

The following is a key Lemma:

Lemma 1. Let 1 ≤ m1 ≤ m2 . . . be a sequence that is lacunary in that there ex-
ists a c > 1 such that mj+1/mj > c for sufficiently large j. Then Qmj converges
to Q∗ almost surely as j →∞.

Proof. Fix any ε > 0, and consider the subsequence nj = de
√
je. Then since

{mj} is eventually an exponentially growing sequence, mj > nj for sufficiently
large j.

Set lj = b 4
√
jc and consider Qmj = Q

≥lj
mj +Q

<lj
mj . Then note that if k = 4

√
j,

E
(
Q
≥lj
mj

)
≤ Cµlj , and

j2

ε2
Cµlj ≤ k8

ε2
Cµk−1 → 0,

as k →∞. This implies that for large enough j, E
(
Q
≥lj
mj

)
≤ ε

j2 .

Any random variable X with finite expectation has the first moment bound:

P (|X| ≥ λ) ≤ E|X|
λ

.

Setting λ = ε, this implies that P (|Q≥ljmj | ≥ ε) ≤ 1
j2 for large enough j. Since∑∞

j=1
1
j2 <∞, the Borel-Cantelli lemma implies that, almost surely, |Q≥ljmj | ≥ ε

only finitely often. Since Q∗ = E
(
Qmj

)
= E

(
Q
≥lj
mj

)
+E

(
Q
<lj
mj

)
, this also implies

|E
(
Q
<lj
mj

)
−Q∗| ≥ ε only finitely often.

Consider now Var
(
Q
<lj
mj

)
≤ C

(mj)1−δ
′ (σmj )

lj .

Note that lj = b 4
√
jc ≤

√√
j ≤

√
log(nj) ≤

√
log(mj). So, by the as-

sumption of Theorem 2, for large enough j, (σmj )
lj < m1−δ

j for some δ > 0.



Fix δ′ = δ/2. Hence for large enough j, C
(mj)1−δ/2

(σmj )
lj < 1

(mj)δ/2
. Since

m
δ/2
j > n

δ/2
j ≥ e(δ/2)

√
j > Cj2/ε2 for large enough j, eventually

Var
(
Q<ljmj

)
≤ ε2

j2
.

Any random variable X with finite variance has the second moment bound:

P (|X − E(X)| ≥ λ) ≤ Var(X)

λ2
.

Setting λ = ε, this implies that for large enough j,

P (|Q<ljmj − E
(
Q<ljmj

)
| ≥ ε) ≤ 1

j2
.

Using the Borel-Cantelli lemma a second time, |Q<ljmj − E
(
Q
<lj
mj

)
| < ε except

finitely often.
Putting together the three ε bounds completes the proof by showing that,

almost surely, except for finitely many j,

|Qmj −Q∗| < 3ε.

Since ε was arbitrary, this completes the proof. ut

The next step is to generalise from lacunary sequences to all sequences. Since
all rewards have been assumed positive, nQn ≤ mQm for n < m. Then for any
1 > ε > 0, define the lacunary sequence mj = d(1 + ε)je. For mj < n < mj+1,

d(1 + ε)jeQmj ≤ nQn ≤ Qmj+1
d(1 + ε)j+1eQmj+1

.

This implies that for large enough j, Qn ≥ Qmj (1/(1 + ε) − ε2) ≥ Qmj (1 − ε)
and Qn ≤ Qmj ((1 + ε) + ε2) ≤ Qmj (1 + 2ε), where the ε2 term comes from the
fact that (1 + ε)j need not be an integer. By the Lemma above, the sequence
Qmj converge almost surely to Q∗, thus, for large enough j and n > d(1 + ε)je,
Qn must be within 3ε(Q∗ + 1) of Q∗. Since ε was arbitrary, this proves that Qn
converges to Q∗ almost surely as n→∞.

This completes the proof for all MDP’s with positive rewards. Note that the
same proof works for MDP’s with negative rewards. Then the general proof is
established for by dividing the rewards into positive and negative parts, noting
their separate convergence, and noting that the Q-values update process is linear
in rewards.

Since this proves the convergence of Qn(s, a) to Q∗(s, a) for any (s, a), and
there are finitely many (s, a) pairs, this proves the almost sure convergence of
Qn to Q∗ in general.

It is now necessary to extend the result to weighted importance sampling. To
do that, it will suffice to show that, under the conditions above,Wn(s, a)/Nn(s, a)→
1 almost surely.



To see this, change the MDP by setting all rewards to 0, except for the final
reward when the agent reaches a terminal state, where they will get 1. This
means that the reward along each history is 1, and the weighted reward is just
the weight. Thus the new Q′n for ordinary importance sampling is Q′n(s, a) =
Wn(s, a)/Nn(s, a). By the result we’ve just proved, these must converge almost
surely to the correct Q-values for the modified MDP, i.e., to 1. This proves that
the ratios converge almost surely to 1, as required.

A Note on the independence assumption

The policy ρn, as defined in equation (5), assumes that the agent choose inde-
pendently between π and π′n for each s ∈ S. If this independence is dropped, the
situation can get even worse for convergence – the agent may fail to converge to
the right values4 even for fixed θ < 1.

Consider the MDP in figure 3. Define the policy π as choosing randomly
amongst the two actions at s1, and choosing a otherwise. Define S′ = {s2, s3}
and π′n as choosing b from all states in S′.

For ρ, the probabilities of choosing π and π′n in S are equal (and the same
from episode to episode), θ2 = θ3 = 0.5, but they are strictly anti-correlated
within a given episode.

s4s3s2

s1

b, 0
a, 0

a, 1

b, 0

b, 0

a, 1

Fig. 3. An MDP on which the agent has non-Markov policy choices.

Notice that the episode history (s1, a, 0, s2, a, 1, s3, a, 1, s4) never appears.
This is because the uses of π′n at s2 and s3 are anti-correlated, so the agent
cannot avoid both of them. Therefore the agent never experiences a total re-
ward of 2; moreover, the only episodes with rewards are the (equiprobable)

4 For non-Markov policies like this one, the off-policy algorithm has to be adjusted to
consider ratios π(h)/ρ(h) for entire histories h (rather the product of state-action
pair probabilities), but this is not a large change.



(s1, a, 0, s2, a, 1, s3, b, 0, s4) and (s1, b, s3, a, 1, s4), both with reward 1. Therefore
the agent will compute Q(s2, a) and Q(s3, a) as having the same values. However,
it is clear that if following π, Q(s2, a) = 3/2 and Q(s3, a) = 1.
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