
FHI Oxford Technical Report #2018-2

Predicting Human Deliberative Judgments
with Machine Learning

Owain Evans∗, Andreas Stuhlmüller†, Chris Cundy∗, Ryan Carey†, Zachary
Kenton∗, Thomas McGrath∗, Andrew Schreiber†

July 13, 2018

Abstract

Machine Learning (ML) has been successful in automating a range of
cognitive tasks that humans solve effortlessly and quickly. Yet many real-
world tasks are difficult and slow : people solve them by an extended
process that involves analytical reasoning, gathering external information,
and discussing with collaborators. Examples include medical advice, judg-
ing a criminal trial, and providing personalized recommendations for rich
content such as books or academic papers.

There is great demand for automating tasks that require deliberative
judgment. Current ML approaches can be unreliable: this is partly be-
cause such tasks are intrinsically difficult (even AI-complete) and partly
because assembling datasets of deliberative judgments is expensive (each
label might take hours of human work). We consider addressing this data
problem by collecting fast judgments and using them to help predict de-
liberative (slow) judgments. Instead of having a human spend hours on a
task, we might instead collect their judgment after 30 seconds or 10 min-
utes. These fast judgments are combined with a smaller quantity of slow
judgments to provide training data. The resulting prediction problem is
related to semi-supervised learning and collaborative filtering.

We designed two tasks for the purpose of testing ML algorithms on
predicting human deliberative judgments. One task involves Fermi esti-
mation (back-of-the-envelope estimation) and the other involves judging
the veracity of political statements. We collected a dataset of 25,000 judg-
ments from more than 800 people. We define an ML prediction task for
predicting deliberative judgments given a training set that also contains
fast judgments. We tested a variety of baseline algorithms on this task.

Unfortunately our dataset has serious limitations. Additional work
is required to create a good testbed for predicting human deliberative
judgments. This technical report explains the motivation for our project
(which might be built on in future work) and explains how further work
can avoid our mistakes. Our dataset and code is available at https:
//github.com/oughtinc/psj.
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1 Introduction

1.1 Fast and slow judgments
Machine Learning has been successful in automating mental tasks that are quick
and effortless for humans. These include visual object recognition, speech recog-
nition and production, and basic natural language prediction and comprehen-
sion [1, 2, 3, 4]. Andrew Ng states the following heuristic [5]:

If a typical person can do a mental task with less than one second
of thought, we can probably automate it using AI either now or in
the near future.1

In this technical report we refer to judgments that are quick (roughly 30 seconds
or less) and easy for most humans as fast judgments. Fast judgments contrast
with slow judgments, which may involve lengthy processes of deliberate rea-
soning, research, experimentation, and discussion with other people.2 Many
important real-world tasks depend on slow judgments:

• Predict the verdict of jury members in a criminal trial.

• Predict which engineers will be hired by a company with an extensive
interview process.

• Predict whether experts judge a news story to be fake or intentionally
misleading.

• Predict a doctor’s advice to an unwell patient after a thorough medical
exam.

• Predict how a researcher will rate a new academic paper after reading it
carefully.

• Predict how useful a particular video lecture will be for someone writing
a thesis on recent Chinese history.

There is great demand for Machine Learning (ML) and other AI techniques
for predicting human slow judgments like these, especially in hiring workers,
detection of fake or malicious content, medical diagnosis, and recommenda-
tion [8, 9, 10, 11]. However ML approaches to predicting these slow judgments
are often unreliable [12, 13, 14]: even if they do reasonably well on a majority of
instances, they may have large errors on more demanding cases (e.g. on inputs
that would be tricky for humans or on inputs chosen by humans to try to fool
the algorithm).

One source of the unreliability for ML algorithms is optimizing for a subtly
wrong objective. Suppose a student gets video lecture recommendations from

1Ng intends it as a heuristic rather than a rigorous scientific conclusion.
2The distinction is similar to that between System 1 (fast) and System 2 (slow) cognition [6,

7]. However, in this work we distinguish judgments by how long they take and whether they
make use of external information and not by the underlying cognitive process. For instance,
fast judgments can depend on quick application of analytical reasoning.
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YouTube.3 These recommendations may be optimized based on video popular-
ity (“Do users click on the video?”) and engagement (“Do users Like or share the
video?”). These metrics are mostly based on fast judgments. Yet the student
would prefer recommendations based on slow judgments, such as the evaluation
of another student who has carefully checked the lecture for factual accuracy by
tracking down the sources. Fast and slow judgments will sometimes coincide, as
when a lecture is inaudible or off-topic. Yet a lecture may seem useful on first
glance while turning out to be riddled with inaccuracies that careful research
would expose.4

Predicting slow judgments in the tasks above is challenging for current ML
algorithms. This is due in part to the intrinsic difficulty of the tasks; predict-
ing how a student evaluates a lecture is arguably AI-complete [16]. Another
difficulty is that collecting slow judgments is inherently expensive: if it takes
five hours of fact-checking to recognize the errors in a lecture then a dataset of
millions of such evaluations is impractically expensive. Big datasets won’t solve
AI-complete problems but will improve ML performance.

Predicting slow judgments is also related to long-term AI Safety, i.e. the
problem of creating AI systems that remain aligned with human preferences
even as their capabilities exceed those of humans [17, 18, 19, 20, 21]. Rather
than create AI that shares only human goals, a promising alternative is to create
AI that makes decisions in the way a human would at every timestep [22, 23].
This approach of imitating human decision-making is only promising if it imi-
tates human deliberate (slow) judgments [24, 25]. A system making thousands
of human-like slow judgments per second could have super-human capabilities
while remaining interpretable to humans [26, 27].

1.2 Using Fast Judgments to Predict Slow Judgments
How can we get around the challenges of predicting slow judgments? One ap-
proach is to tackle the AI-completeness head on by trying to emulate the process
of human deliberate reasoning.5 A second approach (which complements the
first) is to tackle the data problem head on and find ways to collect huge datasets
of real or synthetic slow judgments [38]. This technical report explores an indi-
rect approach to the data problem. Instead of collecting a big dataset of slow
judgments, we collect a small dataset of slow judgments along with a larger
quantity of side information related to the slow judgments.

What kind of side information would help predict a person’s slow judgment?
If Alice makes a slow judgment about a question, then Alice’s fast judgment
about the same question is relevant side information. As noted above, in pre-
dicting a student’s thorough evaluation of a video lecture, it is helpful to know

3This is just meant as an example of a recommender system and is not a comment on
the actual YouTube algorithm. A paper [15] on YouTube recommendations states that they
optimize for whether users follow a recommendation (weighted by user watch-time). This will
mostly depend on fast judgments.

4It could be argued that YouTube, Facebook and other sites are optimizing for being
entertaining and keeping users on the site and that these are well predicted by fast judgments.
Yet it’s clear that users sometimes seek content that they would rate highly after a slow
judgment (e.g. for educational purposes, for help making a business decision). So the question
remains how to build ML algorithms for this task.

5There is a large and varied literature aiming to create algorithms that perform sophisti-
cated reasoning. Here are some recent highlights: [28, 29, 30, 31, 32, 33, 34, 35, 36, 37]
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their fast judgment (e.g. after watching the video for only 30 seconds). Likewise,
a doctor’s guess about a diagnosis after 30 seconds will sometimes predict their
careful evaluation. Another kind of side information for predicting Alice’s slow
judgment about a question are the judgments of other people about the same
question. This is the idea behind collaborative filtering [39], where a person’s
rating of a song is predicted from the ratings of similar people.

While collaborative filtering has been widely studied and deployed, there is
little prior work on using fast judgments as side information for slow judgments.
The motivation for using fast judgments is that they are often easily available
and their cost is much lower than slow judgments. Human cognition is like an
“anytime” iterative algorithm: whereas our slow judgments are more discerning
and reliable, our fast judgments are well-typed and provide increasingly good
approximations to slow judgments over time.6 For most judgment tasks we can
collect fast judgments from humans and these fast judgments will come at a
cost orders of magnitude cheaper than slow judgments. Where fast judgments
sometimes coincide with slow judgments and include uncertainty information7,
it may be better to spend a fixed budget on a mix of slow and fast judgments
than on slow judgments alone. Often fast judgments are not just cheaper to
collect but are essentially free. YouTube, Facebook, Twitter and Reddit have
vast quantities of data about which content people choose to look at, share with
others, “Like”, or make a quick verbal comment on.

Using fast judgments as side information to predict slow judgments requires
modifying standard ML algorithms. While the objective is predicting slow judg-
ments, most of the training examples (e.g. most video lectures) only come with
fast judgments. This is related to semi-supervised learning [40, 41], distant su-
pervision [42] (where the training labels are a low-quality proxy for the true
labels), learning from privileged information [43], as well as to collaborative
filtering.

1.3 Contributions and caveats
This tech report describes a project applying machine learning (ML) to pre-
dicting slow judgments. We designed tasks where slow judgments (deliberate
thinking and research) are required for doing well but quick judgments often
provide informative guesses. We collected a dataset of fast and slow human
judgments for these tasks, and formulated a set of prediction problems (predict-
ing held-out slow judgments given access to varying quantities of slow judgments
at training time). We applied ML baselines: standard collaborative filtering al-
gorithms, neural collaborative filtering specialized to our tasks, and a Bayesian
hierarchical model.8.

Unfortunately our dataset turned out to be problematic and is unlikely to be
a good testing ground for predicting slow judgments. This report describes parts
of our project that may be usefully carried over to future work and summarizes
what we learned from our efforts to create an appropriate dataset. The prob-
lem of predicting slow judgments (and of creating a dataset for the purpose)

6In doing a long calculation we might have no idea of the answer until we solve the whole
problem. For many real-world problems our quick guesses are somewhat accurate and gradu-
ally improve with time.

7That is, the human provides both a guess and a measure of confidence.
8Code is available at https://github.com/oughtinc/psj
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Fermi comparisons

weight of a blue whale in kg < 50,000

population of Moscow ∗ smaller angle
in degrees between hands of clock at
1.45 < 15,000,000

driving distance in miles between Lon-
don and Amsterdam < 371

weight of $600 worth of quarters in
pounds ∗ area of Canada in square
miles < 328,000,000

Politifact truth judgments

Rob Portman: “Since the stimulus
package was passed, Ohio has lost over
100,000 more jobs.”

Republican Party : “Charlie Crist is
embroiled in a fraud case for steering
taxpayer money to a de facto Ponzi
scheme.”

Mark Zaccaria: “James Langevin
voted to spend $3 billion for a jet en-
gine no one wants.”

Figure 1: Example questions. In Fermi, people guess whether the left-hand side is
smaller than right-hand side. In Politifact they guess whether the speaker’s statement
is true.

was harder than expected. We hope to stimulate future work that avoids the
problems we encountered. Our main contributions are the following:

1. We designed two slow judgment tasks for humans: Fermi Comparisons
involve mental reasoning and calculation, and Politifact Truth Judg-
ments involve doing online research to assess the veracity of a political
statement.9 We created a web app to collect both fast and slow judgments
for the task. These tasks and the app could be used in future work.

2. We relate predicting slow judgments with side information to collaborative
filtering and we implement simple baselines based on this relation.

3. We diagnose problems with our dataset. First, while slow judgments were
significantly more accurate than fast judgments, the difference was smaller
than expected. Second, variability among subjects was hard to distinguish
from noise; so ML algorithms could not exploit similarities among users
as in collaborative filtering. Third, while there is clear variation in how
users respond to different questions, this variation is very hard for current
ML algorithms to exploit.

2 Tasks and Datasets for Slow Judgments
Our overall goal was (A) to define the ML problem of predicting slow judgments
given a training set of fast and slow judgments, and (B) to find or create datasets
which can be used to test algorithms for this problem.

The domain that humans are making fast/slow judgments about should be
AI-complete or closely related to an AI-complete problem.10 Solving such a

9Both tasks require humans to decide some objective matter of fact. Yet there is no
requirement that slow judgments be about objective facts: e.g. a student’s judgment about a
lecture is partly based on their own preferences and interests.

10The important real-world problems of predicting slow judgments in Section 1.1 are plau-
sibly AI-complete.
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task will (for some problem instances) depend on patterns or structures that
current Machine Learning algorithms do not capture. So while we cannot hope
for highly accurate predictions of slow judgments, we can seek ML algorithms
that “know what they know” [44]. Such algorithms exploit patterns they are
able to learn (producing confident accurate predictions) and otherwise provide
well-calibrated uncertain predictions [45, 46].

This section describes the AI-complete tasks we designed for testing al-
gorithms for predicting slow judgments. Before that we first review related
datasets in this area.

2.1 Existing Datasets
Many ML datasets record human slow judgments for AI-complete tasks. These
include datasets of movie reviews [47], reviewer scores for academic papers [48],
and verdicts for legal cases [49]. There are also datasets where the ground-truth
labels are the product of extensive cognitive work by humans (e.g. theorem
proving [38], political fact-checking [14]) and these could potentially be used
to study human slow judgments. However, these datasets do not contain fast
judgments. In particular, for each task instance in the dataset, there’s a slow
judgment by a particular individual but there’s no corresponding fast judgment.
Moreover the datasets do not explicitly record information about the time and
resources than went into the slow judgment11. For example, the reviewers of
academic papers do not divulge whether they spent ten minutes or two hours
reviewing a paper.

Due to the lack of existing datasets, we created a new dataset recording
human slow and fast judgments for AI-complete tasks. We designed two tasks
for this purpose, which may be useful for future work in this area (even if our
dataset is not).

2.2 Two Judgment Tasks: Fermi and Politifact
We created two tasks for humans that require deliberate, multi-step thinking and
rely on broad world knowledge. In the Fermi Comparisons task (abbreviated
to “Fermi”) users determine which of two quantities is larger. This often involves
simple arithmetic, factual knowledge, and doing back-of-the-envelope estimates
to determine the order of magnitude of the quantity. Example questions are
show in Figure 1. Note that human subjects (who we refer to as “users”) are
not allowed to look up the quantities online as this would trivialize the task.

In the Politifact Truth task (abbreviated to “Politifact”) users evaluate
whether a statement by a US politician or journalist is true or false (see Figure
1). They have access to metadata about the statement (see Figure 2) and are
allowed to do research online. For both tasks, users assign a probability that
the statement is true (with “0” being definitely false and “1” being definitely
true) and they enter their probability via the interface in Figure 2. Their goal
is to minimize mean squared error between their probabilistic judgment and the
ground-truth answer.

11A paper [50] on adversarial examples for humans does record human judgments under
different time constraints. But this domain is not AI-complete and the slower judgments are
still pretty fast.
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Figure 2: Question-answering UI for Fermi Comparisons (above) and Politifact Truth
(below) tasks. Users are not allowed to do online research for Fermi but are for
Politifact.

Questions and ground-truth answers for Fermi were constructed and computed
by the authors. Political statements and ground-truth (i.e. the judgments of pro-
fessional fact-checkers) for Politifact were downloaded from the politifact.com
API (following [14]).

The Fermi and Politifact tasks satisfy the following desirable criteria:

• A generalized version of each task is AI-complete. Fermi questions depend
on mathematical reasoning about sophisticated and diverse world knowl-
edge (e.g. estimate the mass of the atmosphere). If novel Fermi questions
are presented at test time (as in a job interview for high-flying undergrad-
uates), the task is AI-complete. Politifact questions can be about any
political topic (e.g. economics, global warming, international relations).
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Answering them requires nuanced language understanding and doing so-
phisticated research on the web.

• Fast judgments are informative about slow judgments. Given a question (as
in Figure 2), fast judgments of the probability (e.g. less than 30 seconds)
will be informative about a user’s slow judgment (e.g. 5 or 10 minutes).
However some questions are too difficult to solve with a fast judgment.

• It is possible to make progress through analytical thinking or gathering
evidence. For Fermi, breaking down the problem into pieces and coming
up with estimates for each of the pieces is a useful cognitive strategy. For
Politifact (but not Fermi), participants are allowed to use a search engine
and to read web pages to check political facts.

• The ground-truth is available for both Fermi and Politifact questions. The
problem of predicting slow judgments we discussed in the Introduction
is not limited to human judgments about objective facts (as the list of
examples in Section 1.1 makes clear). However, if the ground-truth is
available then this makes certain experiments possible.12

2.3 Data collection
Human participants (who we refer to as “users”) were recruited online13 and
answered questions using the UI in Figure 2. Users see a question, a form for
entering their probability judgment, a progress bar that counts down the time
remaining, and (for Politifact only) a search engine tool.

For each question, users provides fast, medium and slow probability judg-
ments. In Fermi the user is presented with a question and has 15 seconds to
make the fast judgment. Once the 15 seconds have elapsed, they get an addi-
tional 60 seconds in which they are free to change their answer as they see fit
(the medium judgment). Finally they get another 180 seconds to make the slow
judgment. The setup for Politifact is identical but the time periods are 30, 90
and 360 seconds. (Users are free to use less than the maximal amount of time.
So for particularly easy or difficult questions, the “slow” judgment may actually
only take 30 seconds or less.)

12In Politifact, the ground-truth is just an especially slow judgment of an expert in political
fact-checking and could be modeled as such. We did not try this in our experiments.

13We used Amazon’s Mechanical Turk (MT) for a pilot study. For the main experiment
we used volunteers recruited via social media with an interest in improving their probabilistic
judgments. We found it hard to design an incentive scheme for MT such that the users would
make a good-faith effort to do well (and not e.g. declaring 50% on each judgment) while not
cheating by looking up Fermi answers.
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Figure 3: Correlation between fast and slow judgments for a given question-user pair
for Fermi (above) and Politifact (below). Blue markers are proportional in size to
number of instances and orange line is a linear regression through the data. Fast user
judgments are often 50% but then become more confident in either direction given
more time to think.
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The Fermi data we collected consisted of 18,577 judgments, with a third
of these being slow judgments. There were 619 distinct users and 2,379 Fermi
estimation questions (with variable numbers of judgment per question). Each
user answered 12.9 distinct questions on average (median 5). The Politifact
dataset was smaller, containing 7,974 judgments, from 594 users, covering 1,769
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statements. Each user answered 6.4 distinct questions on average (median 5).

2.4 Descriptive Statistics
Our goal was to use the dataset to train ML algorithms to predict slow judg-
ments and such a dataset should have the following features:

1. Large, clean, varied dataset : as usual a large dataset with minimal noise
is desirable. In particular there should be many judgments per user and
many distinct questions. Possible sources of noise should be minimized
(e.g. users are noisier when learning the task and if they pay less attention
due to tedious or overly difficult questions).

2. Fast-Slow Correlation: fast judgments are informative about slow judg-
ments but not too much. For some users and some questions, fast judg-
ments may be similar to slow judgments. In other cases, the fast judgment
will be uncertain or wrong.

3. User Variation: individual users vary in their overall performance and
their performance in different kinds of question. We want to predict the
slow judgments of an individual (not the ground-truth). In some tasks
listed in Section 1.1 users vary because of different preferences. In Fermi
and Politifact users might vary in their areas of knowledge (e.g. science
vs. sport questions in Fermi).

4. Question Variation: individual questions vary in terms of how users an-
swer them. For example, some questions are hard (producing random or
systematically incorrect answers) and some are easy. This allows algo-
rithms to predict user answers better based on features of the question.

Did our data have the features above? As noted in Section 2.3 the dataset
was relatively small (especially Politifact) and many users only answered a small
number of questions.

Correlations between fast and slow judgments are shown in Figure 3. They
show that judgments started out uncertain but became more confident (in ei-
ther direction) given time, and that confident fast judgments were less likely to
change. Figure 4 shows that slow judgments were more accurate than fast on
average. Nevertheless, the differences between slow, medium and fast judgments
are not as large as we had hoped.

Did users vary in their accuracy? We expected users to vary in overall
accuracy and accuracy for different kinds of question (e.g. some users do better
on science than sports questions). However the level of variation among users
was not high enough to rule out possibility that the best two-thirds of users did
not vary (see Figure 5). This is a problem with the design of our experiment
and we discuss it further in Section 4.
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Figure 4: Variation in User Performance in Fermi for fast and slow judgments.
Histogram shows number of users who obtained a particular level of performance
(measured by MSE). Note that 0.25 is the MSE achieved by a user who always says
50%. While users have widely varying performance, much of this is due to noise and we
can’t rule out the possibility that most users do not vary in actual skill (see Figure 5).

Figure 5: Mean performance on Fermi for different user quantiles. Users were divided
into quantiles based on performance on a random half of the data and the figure shows
their performance on the other half. Error bars show standard error from 5 random
divisions into quantiles. The graph suggests we can’t rule out the null hypothesis that
the best two-thirds of users don’t vary in their accuracy. (We removed users with less
than k=6 judgments; the graphs were similar when k was set higher.)

Questions in both Fermi and Politifact did vary significantly in difficulty for
human users (see Figure 6). However, there are less than 2500 questions for
each task. This makes it hard for algorithms to generalize from the question
text or meta-data without substantial pre-training.
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Figure 6: Variation in question difficulty for human users. Histograms show number
of questions with a given MSE across users. Many questions had an MSE near zero
(most users got them confidently right), while others were difficult (MSE near 0.25)
or counter-intuitive (MSE greater than 0.25).

3 Predicting Slow Judgments with ML
This section presents a problem definition for predicting slow judgments using
ML and results for baseline algorithms on our dataset. The ML task and algo-
rithms are independent of the dataset and may be useful for future work in this
area.

3.1 Task: Predicting Slow Judgments with ML
3.1.1 Task Definition

For both Fermi and Politifact the data consists of user probability judgments
about questions. Each probability judgment h(q, u, t) ∈ [0, 1] depends on the
question text and meta-data features q, the user id u, and the time t ∈ {0, 1, 2}
(where the indices correspond to fast, medium, and slow judgments respec-
tively).

We let ĥ(q, u, t) be an algorithm’s prediction of the user judgment h(q, u, t).
The task is to predict slow judgments h(q, u, 2) from the test set. While only
slow judgments appear in the test set, the training set consists of fast, medium
and slow judgments.14 The loss function is mean-squared error over all slow
judgments in the test set. Let T = {(q, u)} be the set of question-user pairs
that appear in the test set. Then the objective is to minimize the mean squared
error over slow judgments in the test set:

1

|T |
∑

(q,u)∈T

[
h(q, u, 2)− ĥ(q, u, 2)

]2
(1)

Note that this problem setup is analogous to content-based collaborative
filtering, where the task is to predict a user’s held-out rating for an item (e.g. a
movie), given the user id and a feature vector for the item [51].

14The test set is randomly sampled from the entire dataset and so the same users and
questions can appear both in train and test.
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3.1.2 Train on Fast Judgments, Predict Slow

Slow judgments are much more expensive to collect than fast judgments. Yet for
questions that are either very easy or very difficult for a user, the fast and slow
judgments will be very similar. So if a model can learn when fast judgments
are a good proxy for slow judgments, it can predict slow judgments reasonably
well from a much cheaper dataset (as discussed in Section 1.1).

In our dataset we have the user’s slow judgment for a question whenever we
have the fast judgment. Yet we can simulate the strategy of mostly collecting
fast judgments by masking many of the slow judgments from our training set.15
Our results are computed for three different levels of masking. “Unmasked”
means that all slow judgments in the training set are included. “Heavy” means
90% of question-user pairs have the medium and slow removed and 7% have
just the slow removed. “Light” means we removed slow and medium judgments
for 60% of question-user pairs and removed just slow for 30%.16

3.2 Algorithms and Results
We ran the following baseline algorithms on our datasets:

1. Collaborative Filtering (KNN and SVD): The prediction task is closely
related to collaborative filtering (CF). The main difference is that instead
of predicting a user’s judgment about an item, we predict a user’s judg-
ment about a question at a given time (where we expect users to generally
converge to zero or one given more time). To reduce our task to CF, we
flatten the data by treating each user-time pair (u, t) as a distinct user.
We applied the standard CF algorithms K-nearest-neighbors (KNN CF)
and singular value decomposition (SVD CF), using the implementation in
the Surprise library [52].

2. Neural Collaborative Filtering : We adapt the Neural CF algorithm [53]
to our task. A neural net is used to map the latent question and user
embeddings to a sequence of judgments for each time. Linear Neural CF
forces the judgments to change linearly over time.

3. Hierarchical Bayesian Linear Regression: To predict the user judgment
for a question we pool all user judgments for the same question (ignoring
user identity) and regress using a Bayesian linear regression model. This
model exploits the temporal structure of judgments but it discards the
question features and user identity.

4. Clairvoyant Model : Since user slow judgments are correlated with the
ground-truth, algorithms will do better on new questions to the extent
they can predict the ground-truth. Predicting ground-truth without side-
information is difficulty for Fermi and Politifact. However, we can investi-
gate how well a model would do if it had access to the ground-truth. The

15This is like the standard practice in semi-supervised learning, where researchers remove all
but 5% of the labels from the training set to simulate a situation where most data is unlabeled

16In order to achieve clear-cut separation of the training data and the held-out test set
we also implemented a masking procedure before doing the additional masking for Light and
Heavy. For each judgment in the test set, we removed the medium judgment made by the
same user about the same question from the training set. We also stochastically remove the
corresponding fast judgment with 80% probability.
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“Clairvoyant” model simply predicts that each user will respond with the
ground-truth answer with full confidence. The “Clairvoyant Mean” model
predicts the base-rate probability for a user given the ground-truth of a
question.

3.3 Results
Table 1 shows results for Fermi and Politifact with different levels of masking of
slow judgments. Hierarchical Linear Regression and SVD perform best. Since
Hierarchical Linear regression ignores both question features and user identity,
this suggests it is difficult for algorithms to improve predictions by modeling
questions and users. This is additional evidence that our dataset is problematic.

We had expected the Neural CF algorithms would do well, as they learn
latent representations for both questions and users and (unlike SVD and KNN)
they do not discard the temporal structure in the data. However, their poor
performance is partly explained by the difficulty (discussed in Section 2.4) of
distinguishing user variation from noise.17

The performance of Clairvoyant Mean suggests that non-clairvoyant algo-
rithms could be improved with a strong language and reasoning model that
accurately predicts the ground-truth.18

Table 1: Mean squared test error for various algorithms and different levels of masking
slow judgments at training time. Note that Clairvoyant models had access to ground-
truth and other models did not.

Politifact Fermi

Unmasked Light Heavy Unmasked Light Heavy

KNN CF 0.127 0.130 0.133 0.115 0.125 0.134
SVD CF 0.124 0.126 0.127 0.102 0.113 0.112
Linear Neural CF 0.131 0.135 0.135 0.137 0.141 0.141
Neural CF 0.130 0.131 0.129 0.136 0.136 0.138
Hierarchical Lin. Reg. 0.123 0.126 0.127 0.098 0.107 0.114

Clairvoyant 0.242 0.242 0.242 0.216 0.216 0.216
Clairvoyant Mean 0.112 0.112 0.112 0.111 0.111 0.111

Always Guess 50% 0.137 0.137 0.137 0.138 0.138 0.138

4 Discussion: Mitigating Dataset Problems
Some problems with our dataset were described in Section 2.4. How could these
problems be mitigated in future work?

Problem: Fast and slow judgments were too similar

There weren’t big differences between fast and slow judgments. This can be
addressed by choosing a task that requires more thinking and research than

17Like Hierarchical Linear Regression, the Linear Neural CF assumes that judgments evolve
linearly over time. However, Linear Neural CF does not build in which data-points to regress
on and wasn’t able to learn this.

18We experimented with various language models (results not shown). We found it difficult
to train or fine-tune these models on our small dataset without overfitting.
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the Fermi and Politifact tasks. The task should also be incremental, such that
a small amount of additional work yields a slightly better answer.19 If addi-
tional work is unlikely to help, users will be averse to doing it (without big
compensation).

Problem: Variation between users was hard to distinguish from noise

Lack of discernible variation can be addressed by collecting substantially more
data per user and by trying to reduce noise (e.g. having practice questions,
having less ambiguous questions, having tasks for which users are consistently
fully engaged).

A related issue is that human responses were low in information content.
Users assigned probabilities (from 20 discrete options) to binary ground-truth
outcomes. Many questions were easy and were answered with 95-100% confi-
dence, while others were very difficult and answered with 50-55% confidence.
Furthermore, users were rarely anti-correlated with the ground truth, so slow
judgments for true statements were generally answered somewhere in the range
60-100%, which is a small region of the response space in terms of mean squared
error. This problem of low information content could be addressed by having
a task where user responses are richer in information: e.g. scalar valued, cate-
gorical (with many categories), or a text response such as a movie review. The
cost of this change is that the ML modeling task becomes harder.

Another way to address this issue is to have a task in which the goal for users
is something other than guessing the ground-truth. There are many situations
in which people make slow judgments for questions that are not about objective
matters of fact. For example, when someone reviews a non-fiction book for
their blog, they consider both objective qualities of the book (“Does it get the
facts right?”) and also subjective qualities (“Did I personally learn things from
it? Will it help me make decisions?”). As noted above, there is nothing about
our task definition or modeling that assumes the questions have an objective
ground-truth.20

Problem: Question features were hard for algorithms to exploit

The questions in our tasks varied substantially in difficulty and content. Our
models couldn’t really exploit this variation, probably because (a) there were
less than 2500 questions, and (b) predicting whether a question is challenging for
humans is an intrinsically difficult task (drawing on NLP and world knowledge).

Having models that can make use of question and meta-data features is an
important goal for our research. If models can only predict slow judgments
based on other human judgments, they will not be able to generalize to new
questions that no humans have yet answered.

The most obvious fix for this problem is to collect a much larger dataset.
If the dataset contained millions of questions then language models would be
better at learning to recognize easy vs. difficult questions. While collecting

19This would also allow a series of intermediate times between fast and slow.
20We collected data for a third task (not discussed elsewhere in this report), where the aim

was to evaluate Machine Learning papers. We asked researchers to judge papers subjectively
(“How useful is this paper for your research?”) rather than objectively (“Should the paper
be accepted for a conference?”). Unfortunately we did not a sufficient amount of data from
volunteers. But we think some kind of variant on this task would be worth doing.
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such a big dataset would be expensive, the cost could be mitigated by mainly
collecting fast judgments.21 An alternative to collecting a large dataset is to
choose some object task (instead of Fermi and Politifact) for which pre-trained
language models are useful (e.g. something related to sentiment analysis rather
than judging the ground-truth of statements).

5 Conclusion
Machine Learning will only be able to automate a range of important real-world
tasks (see Section 1.1) if algorithms get better at predicting human deliberative
judgments in varied contexts. Such tasks are challenging due to AI-completeness
and the difficulty and cost of data. We tried to create a dataset for evaluating
ML algorithms on predicting slow judgments. The previous section discussed
problems with our dataset and potential remedies. It’s also worth considering
alternative approaches to the challenge we outline in Section 1.1. First, some
tasks may be more fruitful to model than Fermi estimation and political fact
checking. Second, deliberation can be modeled explicitly by building on recent
deep learning approaches [28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. To more precisely
capture how humans deliberate, we could also record the individual steps people
take during deliberating (e.g. by requiring users to make their reasoning explicit
or by recording their use of web search). Finally, we acknowledge that while
predicting slow judgments is an important task for the future of AI, it may be
difficult to make progress on today.

21It remains to be seen how well this can work if the goal is to predict slow judgments.
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