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Abstract

Learning the preferences of other people is crucial for predict-
ing future behavior. Both children and adults make inferences
about others’ preferences from sparse data and in situations
where the preferences have complex internal structures. We
present a computational model of learning structured prefer-
ences which integrates Bayesian inference and utility-based
models of preference from economics. We experimentally test
this model with adult participants, and compare the model to
alternative heuristic models.
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Introduction
Children and adults are highly adept at inferring hidden men-
tal states such as preferences from observed behavior. Work
in developmental psychology has shown that by 18 months,
children have learned that others have preferences which are
different from their own; moreover, they can infer these pref-
erences on the basis of observing several choices (Repacholi
& Gopnik, 1997). Further work has shown that children’s in-
ferences are sensitive to the statistical properties of observed
choices, so that choices which are less likely a priori are more
likely to reflect strong preferences (Kushnir, Xu, & Wellman,
2008).

Despite the ease with which people appear to reason about
others’ preferences, such reasoning is a highly challenging
computational task. An individual’s preferences are never
fully determined by their past choices. Moreover, people have
to infer preferences on the basis of sparse data, perhaps only
a few observed choices.

Our goal in this paper is to develop a computational model
of preference learning on the basis of sparse observations. In
the spirit of Marr’s levels of explanation, we must first spell
out the computational problem which has to be solved. In
this case, the problem has two parts. First, what exactly has
to be learned? Are an agent’s preferences simply a ranking
of different choices, or do they have more internal structure?
Second, how can these preferences be learned on the basis of
observing an agent’s choices?

Previous Work
Previous computational models of preference learning have
mostly focused on the second question. Central to these mod-
els is theprinciple of rationality, according to which people
are rational agents whose behavior is directed towards satis-
fying their preferences. Crucially, these models do not claim
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that the principle of rationality is descriptively true, but rather
that it is assumed by people’s intuitive theory of mind. These
models treat the problem of preference learning as one of in-
verting the principle of rationality: in order to infer some-
one’s preferences from their behavior, consider what prefer-
ences would have made this behavior rational.

In the inverse-planning model of Baker, Tenenbaum, and
Saxe (2007), the task is to determine which of several candi-
date goals an agent desires on the basis of partial movements
towards those goals. The agent is assumed to have a rank-
ing of the goals, from best to worst, and which of the goals
is desired is inferred by assuming that the agent is moving
efficiently towards the desired goal. Using Bayesian infer-
ence, the model recovers a distribution over desired goals by
supposing that a given goal makes efficient movement toward
that goal highly likely. In this paper, there is a sophisticated
link between preference and behavior, but preferences them-
selves have a simple structure.

Lucas et al. (2009) again use a Bayesian model for in-
ference, but use a more sophisticated model for preferences.
Instead of having preferences over outcomes, different pos-
sible object features have different utilities (are differentially
preferred). Preferences over objects are given by a weighted
sum over the objects’ features. Agents are assumed to choose
the object which gives them the maximal quantity of desirable
features.

These models were not intended to capture how prefer-
ences might be learned when the goods being chosen between
have complex functional relationships. Suppose, for example,
that someone is choosing between a bicycle frame and bicy-
cle wheels. It will not generally make sense to say that they
prefer the frame to the wheels, or vice-versa. Rather, they
most likely want an entire bicycle, meaning that whether they
want the wheels will depend on whether they already have
a suitable frame. Any computational model of this situation
will have to account for this additional structure in the agent’s
preferences.

We combine the Bayesian modeling of Baker et al. and
Lucas et al. with formal models of structured preferences de-
veloped by economists. We test our model experimentally
by examining adult inferences in tasks that provide informa-
tion about the interactions between goods. By systematically
varying these interactions, we try to determine whether pref-
erence learning is sensitive to the structure of the preferences
being learned.



Modeling Structured Preferences
Economists are interested in modeling agents who are choos-
ing between goods that can have a range of functional rela-
tionships. They are also interested in modeling agents over
long spans of time, meaning that they have to account for
how novel goods may interact with goods already possessed
by the agent. In order to model these interactions and effects
of context, economists often will not assign utilities to indi-
vidual goods, but rather to bundles of goods, where the bundle
(A,B) consists ofA units of one good andB units of another
good. Different interactions between goods in a bundle can
be captured by different utility functions on these bundles.

We will be considering three kinds of interactions between
goods, each of which is standard in economics (see, e.g.,
Mas-Colell, 1995). The first class of goods are known assub-
stitutes. Two goods will be substitutes if either can be used,
independent of the other, to accomplish a single goal. For
example, two brands of cherry soda are substitutes for each
other: if someone wants to drink cherry soda, they can sat-
isfy that goal by drinking either brand. The second class of
goods arecomplements. These goods must both be used in a
specific proportion to accomplish a particular goal. Bicycle
wheels and a bicycle frame must be put together in a ratio of
two to one in order to accomplish the goal of building a func-
tional bicycle. The last class of goods will be described by
a Cobb-Douglasutility function, which is presented below.
These goods perform some goal most effectively in a particu-
lar ratio, but can still perform the goal to some extent in other
ratios as well. If someone wants to have a fun vacation, it
may be best to spend some number of days on the beach and
some number of days on a cruise, as an entire vacation on the
beach might get boring. However, additional days on either
the beach or the cruise will still improve the trip.

These interactions can be captured by three different utility
functions on bundles of goods. If two goods are substitutes,
then we can set:

u(A,B) = α ·A+(1−α) ·B (1)

whereA is the quantity of the first good andB is the quan-
tity of the second good. The weight encodes how well each
of the goods serves its function. This equation says that we
always get the same amount of utility out of an extra unit of
the first good, regardless of how much of the second good we
have, and vice-versa. This is essentially the utility function
used in Lucas et al., withA andB representing the quantities
of two different features.

For complements, we set the utilities of the two goods to
be:

u(A,B) = min(α ·A,(1−α) ·B) (2)

Parameterα in this case determines the required propor-
tions between the two goods. Once the goods are in their cor-
rect proportions, an additional unit of either good alone will
not increase utility. In order to increase utility, extra units of
both goods have to be added.

The Cobb-Douglas utility function is defined by:

u(A,B) = Aα ·B1−α (3)

As in the case of complements, the parameterα determines
the optimal ratio of the two goods. Unlike in the case of com-
plements, additional units of a single good can still increase
utility without additional units of the other good. Crucially,
there is diminishing marginal utility in each good, holding
the other good fixed. In other words, each additional unit of a
single good increases utility less and less, unless more of the
other good is added.

These utility functions are often the first introduced in mi-
croeconomics textbooks, both because of their simplicity and
because the structures which they encode are so common.
However, the space of possible utility functions and possible
interactions between goods is enormous (Mas-Colell, 1995).
Though we will only be considering these three cases, our
model of preference learning, which we describe next, is
compatible with any parameterized utility function.

Computational Modeling

Economists have supposed that individual preferences can
be represented by the utility functions above and that agents
choose bundles with highest utility. By assuming that prefer-
ences have this form, predictions can be made about choice
in unobserved situations, by computing the relevant utilities.

On our model of human intuitive preference inference,
people’s intuitive inferences use the same representation of
preferences as economists—people are intuitive economists.
They can represent different utility function types, corre-
sponding to the way goods interact in a particular situation.
For a given utility function type, they can represent different
relations between the goods involved—e.g. that a particu-
lar ratio of one good to another is optimal. Again following
economics, we propose that people employ the principle of
rationality, connecting preference to choice.

In order to model reasoning about agents’ choices in sit-
uations where the objects of choice interact with each other,
we integrate the structured utility functions discussed above
with Bayesian inference and the principle of rationality. We
assume that the observed agent’s preferences over a given set
of objects is well-described by one of the utility functions dis-
cussed above; which of the utility functions is appropriate in
a particular situation will depend on both the causal relations
between the objects and the agent’s goals. Whatever the util-
ity function of the agent, we assume that she is approximately
rational and softly maximizes her utility. The probability of
a choice given her utility function is therefore given by the
Luce-Choice rule:

P(c|u) ∝ exp(β ·u(c)) (4)

where u is the agent’s utility function, c is a choice, andβ is
a noise parameter that determines how close the agent is to
rational. We setβ equal to 15 throughout.



We do not attempt to model how an observer might deter-
mine, before seeing any of an agent’s choices, which utility
function the agent is using in a particular situation. Rather,
we assume that the observer has a prior distribution P(u) over
the possible utility functions which apply in the situation. For
example, we will not attempt to model how one might learn
that bicycle wheels and bicycle frames are complements. In
general, P(u) will depend on the observer’s prior knowledge
about the relations between the goods in question. The ob-
server is also given a prior P(α) for each utility function u
over the parameter alpha of the utility function. Throughout,
we assume P(α) follows a Beta(2,2) distribution.

These assumptions allow us to use Bayesian inference to
infer an agent’s utility function from her choices. Given ob-
served choices C, the posterior over utility functions is given
by:

P(u|C) ∝ P(C|u) ·P(u) (5)

where u is the utility function with parameterα. This formula
inverts the generative model of the agent’s behavior captured
by her utility function and the Luce-Choice rule (Equation 4).
From observed choices C, we can infer the probability of a
novel choice c by averaging over the agent’s utility functions:

P(c|C) =
Z

P(c|u)P(u|C)du (6)

Using the Luce-Choice rule to give the likelihoodP(c|u), we
recover the mixed multinomial logit model which is used in
Lucas et al. as well as many papers in econometrics (McFad-
den & Train, 2000).

Experiment
In the following experiment we test the quantitative predic-
tions of the structured preference learning model. We de-
signed scenarios in which an agent chose between bundles
of goods, with each bundle containingA amount of one good
andB amount of another good. In order to distinguish our
model from previous utility-based models (Baker et al., 2007;
Lucas et al., 2009) we varied the functional relationship be-
tween the goods described in the scenarios in order to match
the three utility function types described above. Thus we
constructed three separate groups of scenarios. In the Sub-
stitutes Group, the two goods were substitutes for each other.
Hence, economists would model the preferences of an agent
over these goods using a substitutes utility function (Equa-
tion 1). In the Complements Group of scenarios, the goods
were complements for each other and so preferences over
them would be modeled by a complements utility function
(Equation 2). In the Cobb-Douglas Group, the goods were
related in the way described by Cobb-Douglas utility func-
tion (Equation 3).

Our experiment aims to question whether people are intu-
itive economists. That is, whether they recognize the func-
tional relationship between goods in a particular scenario and
model an agent’s preferences with a utility function over bun-
dles of the goods that is appropriate to that functional rela-
tionship. A key prediction of the theory from economics is

that different functional relationships will lead to different
patterns of preference across bundles of the same size. For
example, once you have two wheels for your bike, additional
wheels are worth very little, while after two days at the beach,
further days might still be very desirable. To test this, we de-
signed scenarios for which the numerical properties of the
bundles could be held fixed while the functional relationship
between the goods in the bundles was varied.

Methods

Participants Participants were 480 individuals on Amazon’s
Mechanical Turk who received a small compensation for their
time.

Materials and Procedure As noted above, we designed
three groups of scenarios: Substitutes, Complements and
Cobb-Douglas. Scenarios differed across the groups in how
the goods being acquired related functionally, and hence in
which utility function models preferences for the goods in
the scenario.

An example stimulus for the Cobb-Douglas group is the
following:

Last year, John and his wife took a one-week va-
cation in the Caribbean. When John was booking the
trip he had the choice between two package deals, which
both cost the same amount:

(A) 4 days on the beach and 2 days on a cruise
(B) 3 days on the beach and 4 days on a cruise.
John chose package (B) and thought that was the best

choice given his options. This year John and his wife
are planning another trip to the Caribbean. John needs
to book the trip in advance. He has to decide between
two package deals. Both deals cost the same amount:

(C) 5 days on the beach and 5 days on a cruise
(D) 8 days on the beach and 2 days on a cruise.
Which option should John take?

As this example illustrates, the scenarios consisted of three
parts: (1) setup of the first choice situation, (2) the agent
chooses one bundle of goods over another, and (3) the agent
faces a new choice situation. Each scenario was shownin 16
numerical conditions: these were the quantities of goods in
each bundle in the two choice situations. In the example
above, the bundle (3,4) was chosen over the bundle (4,2), and
participants were asked to choose between the bundles (5,5)
and (8,2). In different numerical conditions, the quantities
in these bundles were varied. In pre-testing, we found that
participants were making inferences about the cost of each
bundle on the basis of bundle size; as a result, we subse-
quently stated in each scenario that the bundles being cho-
sen from were the same price. Because this was incompatible
with one of the scenarios, it was removed from subsequent
testing. This left a total of 11 scenarios: three in the Cobb-
Douglas Group, four in the Substitutes Group, and four in the
Complements Group. Pre-testing also suggested possible or-
der effects in some of the numerical conditions, which were



controlled in subsequent experiments. The scenarios were
crossed with the numerical conditions, for a total of 11x16
inference questions.

Participants each received five or six distinct scenarios; nu-
merical conditions were randomized across participants.

If people are sensitive to the structure of the agents’ util-
ity functions, then identical numerical conditions should give
rise to different patterns of inference, depending on the sce-
nario group. For example, if the goods are complements, then
the observer should be uncertain about the optimal propor-
tion of one good to the other. They will take the agent’s
initial choice as evidence about the optimal proportion, and
will subsequently choose the bundle which fits this inferred
proportion as closely as possible. On the other hand, if the
goods are substitutes, then they will take the initial choice
as evidence about how well each good serves its function,
and will subsequently choose the bundle which maximizes
the weighted sum of the two goods. If both bundles have the
same size, then they will choose the one with the most of the
better good.

Model Predictions
In order to make model predictions, we used the multino-

mial logit model (Equation 6) to find the probability of taking
option (C) or (D) conditional on the agent’s first choice. This
probability was approximated through MCMC simulations,
using the Metropolis-Hastings method.

We computed these probabilities under a variety of settings
for the noise parameterβ in the soft-max equation (Equation
4) and for the prior distribution Beta(α, α) over the utility
functions’ weight parameter. The noise parameter was set to
15 andα was set to 2 based on the fit of the model to the
data over all conditions. Figure 1 shows the sensitivity of the
model’s predictions to the value ofβ. The mean squared error
of the model varied between 0.04 and 0.1 asβ varied between
0.1 and 20. We similarly analyzed the model’s sensitivity to
the value ofα. We found that the mean squared error of the
model varied between 0.04 and 0.1 asα varied between 1 and
10.

Our computational model predicts agent preferences by
matching the appropriate utility function to the scenario.
Thus, e.g. scenarios in the Complements group will be mod-
eled with very strong prior probability on the Complements
utility function and likewise for the other two groups.

In order to assess the distinctive predictions of our model,
we implemented three heuristic models of preference infer-
ence. These heuristics implement rules for making prefer-
ence inferences that are not based on calculations of utility.
The heuristics worked as follows. The Sophisticated Ratio
Heuristic was a model of ratio-matching, in which goods are
selected based on how close their ratio is to an optimal ra-
tio. The heuristic considers a range of possible optimal ratios
and uses Bayesian inference to integrate over these ratios in
making predictions. This differs from the complements func-
tion in being insensitive to absolute quantities of the goods.
The Crude Ratio Heuristic was similar to the Sophisticated

Ratio Heuristic, except that instead of considering a range of
possible ideal ratios, it treats the ratio of goods in the ob-
served choice as ideal. The Max Heuristic assumes that one
of the two goods is preferred, and that agents will always
choose the bundle that contains the greatest quantity of the
preferred good. This differs from the substitutes utility func-
tion in being insensitive to the quantity of the non-preferred
good. These three heuristics do not assign utilities to bundles
but instead simply select one outcome as the best.

Table 1: Correlations between the three different utility mod-
els and subject judgments. Scenarios 1-3 were intended to be
best fit by a Cobb-Douglas utility function; scenarios 4-7 by
a Substitutes utility function; and scenarios 8-11 by a Com-
plements utility function.

Scenario Cobb Substitutes Complements
1 0.79 0.83 0.50
2 0.62 0.72 0.30
3 0.80 0.70 0.80
4 0.85 0.95 0.45
5 0.69 0.83 0.32
6 0.87 0.91 0.49
7 0.81 0.93 0.36
8 0.64 0.34 0.87
9 0.63 0.41 0.86
10 0.78 0.74 0.69
11 0.46 0.23 0.87

Table 2: Correlations between the best heuristic models and
participant judgments.

Scenario Crude Ratio Max
1 0.55 0.89
2 0.57 0.73
3 0.91 0.76
4 0.48 0.95
5 0.37 0.76
6 0.61 0.93
7 0.55 0.96
8 0.82 0.44
9 0.94 0.49
10 0.70 0.80
11 0.87 0.26

Results. We first consider the model fit when all of the
weight of the prior probability distribution is placed on a
particular utility function type. As noted above, scenarios
were grouped based on which utility function we believed
would best fit the goods in the scenario. If participants are
sensitive to the functional relationship between the goods in
each scenario, then their judgments should be best fit when a
high prior probability is placed on the group’s utility function
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Figure 1: Sensitivity of model performance to the value of the noise parameterβ.

M

Figure 2: Human judgments vs. utility model predictions (blue dots) and heuristic predictions (green triangles) for a com-
plements scenario. Other scenarios showed a similar relationship between human judgments and the predictions of the two
models.

type. In all of the Substitutes scenarios and three of the four
Complements scenarios, the human data was best fit by the
scenario’s corresponding utility function type. Participants’
judgments in two of the three Cobb-Douglas scenarios are
best fit by the substitutes utility function. These results are
shown in Table 1.

We next tested the fit of our heuristic models. The free
parameters of the heuristics were chosen to maximize over-
all correlation with the human data. The Crude Ratio and
Max heuristics had the highest correlations, so we restrict
our attention to them. The Max Heuristic had high (above
0.7) correlations with human judgments on all of the Cobb-

Douglas and Substitutes scenarios. The Crude Ratio Heuris-
tic had similarly high correlations on all of the Complements
scenarios. These results are shown in Table 2.

Discussion
Our experiment aimed to investigate two questions. The first
was whether people are sensitive to the functional relation-
ships between goods when they make inferences about peo-
ple’s preferences. The second was, if people are sensitive to
these functional relationships, what do they learn about oth-
ers’ preferences from their observations? Our results pro-
vide evidence that participants were sensitive to the func-



tional relationships between goods. In particular, participants
appeared to distinguish between the Complements scenarios
and the other scenarios, although we did not find evidence
that they distinguish between the Cobb-Douglas and Substi-
tutes scenarios. This is indicated by the fit of both the utility
and heuristic models. A single utility model (with all of its
prior weight on the substitutes utility function) and a single
heuristic (the Max Heuristic) correlate well with human judg-
ments in the Cobb-Douglas and Substitutes scenarios. On the
other hand, these two models fare poorly on most of the Com-
plements scenarios. The complements utility model and the
Crude Ratio Heuristic provide better fits for these scenarios.

The performance of the Max Heuristic on a particular sce-
nario is very well predicted by the performance of the substi-
tutes utility function on that scenario; the same is true of the
Crude Ratio Heuristic and the complements utility function.
The Max Heuristic naively tracks a relationship which is im-
portant to the substitutes utility function, namely which good
is favored over the other. The Crude Ratio Heuristic gives a
noisy estimate of the optimal ratio between goods, which is
similarly important to the complements utility function. This
provides evidence that participants were sensitive to the op-
timal ratio of goods in the Complements scenarios, and to
which was the preferred good in the other scenarios.

It is an interesting question whether the utility-based or
heuristic models provides a more promising approach to mod-
eling preference learning. The best heuristic models were
able to capture the qualitative shape of participants’ judg-
ments. The heuristics were able to correctly classify bundles
as more or less likely to be chosen. A representative scenario
is shown in Figure 2. On the other hand, human judgments
showed a gradedness that was better captured by the utility
models. As predicted by the utility models, participants var-
ied across numerical conditions in how strongly they thought
one bundle should be chosen over another. This is also shown
in Figure 2.

Conclusion

We have presented a computational model of structured pref-
erence learning. Our model incorporates Bayesian inference
with economic models of internally complex preferences. Us-
ing a standard tool from econometrics, it can be used to model
how individuals infer what someone prefers on the basis of
past observations. We experimentally tested the model, and
found that participants were sensitive to the functional rela-
tionships between goods in some of the ways that the model
predicts. Future experiments could help to differentiate the
utility-based and heuristic models. These models will make
distinct predictions, for example, when the sizes of the bun-
dles being chosen between are different. Bigger bundles will,
all things being equal, be preferred by the utility-based mod-
els, while this is not always true for the heuristics.

Further work needs to be done in systematically varying
the structure of the preferences being learned. This may be
done by explicitly varying the causal structures of the choice

scenarios so that subjects’ prior beliefs about these relations
do not come into play. This suggests a further line of research:
studying whether individuals can make use of more complex
functional relationships than the ones that were considered
here. If individuals can effectively learn others’ preferences
in a range of situations, then it is unlikely that these prefer-
ences will be captured by the simple functional forms studied
here.
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