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Abstract

This report examines the issue of the resource demands and constraints
for very fast large-scale settlement by technologically mature civilizations.
I derive various bounds due to the energy and matter requirements for
relativistic probes, and compare with bounds due to the need to avoid
collisions with interstellar dust. When two groups of the same species
race for the universe, the group with the biggest resources completely
preempts the other group under conditions of transparency. Expanding
nearby at a lower speed in order to gain resources to expand far at a high
speed is effective. If alien competitors are expected this sets a distance
scale affecting the desired probe distribution.

This report examines the issue of the resource demands and constraints for
very fast large-scale settlement. If a technologically mature species wishes to
settle as much of the universe as possible as fast as possible, what should they
do? If they seek to preempt other species in colonizing the universe, what is
the optimal strategy? What if the competitor is another fraction of their own
civilization?

1 Motivation and earlier work

In an earlier paper [2] we outlined how a civilization could use a small fraction of
a solar system to send replicating probes to all reachable galaxies, and then re-
peat the process to colonize all stars inside them. The model was not optimized
for speed but rather intended as an existence proof that it is physically feasible
to colonize on vast scales, even beyond the discussions of galactic colonization
found in the SETI literature.

A key question is whether it is rational to use up much of the available
resources for this expansion, or if even very aggressively expanding species would
leave significant resources behind for consumption. Hanson has argued that a
species expanding outwards would have economic/evolutionary pressures to use
more and more of resources for settlement, ”burning the cosmic commons”
[1]. In this model the settlement distances are small, so there are numerous
generations and hence evolutionary pressures could exert much influence. In
contrast, our model of long-range colonization [2] uses limited resources and has
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few generations but is not optimized for speed: internal competitive pressures
might hence lead to different strategies.

The related model in [5] describes civilizations converting matter under its
control to waste heat, examining the cosmological effects of this. Here the energy
costs of the probe expansion is not explicitely modelled: the conversion is just
assumed to be due to consumption.

1.1 Assumptions

We will assume civilizations at technological maturity can perform and auto-
mate all activities we observe in nature. In particular, they are able to freely
convert mass into energy1 in order to launch relativistic objects able to self-
replicate given local resources at target systems. The report also assumes a
lightspeed limit on velocities: were FTL possible the very concept of ”as early
as possible” becomes ill-defined because of the time-travel effects. This is similar
to assumptions in [2, 5].

The discussion of dust and radiation (3.1) issues assumes some physical limits
due to the fragility of molecular matter; if more resilient structures are possible
those constraints disappear.

The universe is assumed to be dark-matter and dark-energy dominated as the
ΛCDM model, implying accelerating expansion and eventual causal separation
of gravitationally bound clusters in 1011 years or so.

The civilization has enough astronomical data and prediction power to reli-
ably aim for distant targets with only minor need for dynamical course correc-
tions.

We will assume claimed resources are inviolable. One reason is that species
able to convert matter to energy can perform a credible scorched earth tactic:
rather than let an invader have the resources they can be dissipated, leaving the
invader with a net loss due to the resources expended to claim them. Unless
the invader has goals other than resources this makes it irrational to attempt
to invade.

2 Energy constraints

Assume the species has available resource mass R and can launch probes of mass
m. If they use a fraction f of R to make probes and the rest to power them
(through perfect energy conversion) they will get N = fR/m probes.

The energy it takes to accelerate a probe to a given γ-factor is Eprobe =
(γ − 1)mc2. The energy to accelerate all probes is E = (γ − 1)mc2fR/m =
(γ− 1)Rfc2. The available energy to launch is E = Rc2(1− f), so equaling the
two energies produces

γ = 1 +
1− f
f

=
1

f
. (1)

The speed as a function of gamma is v(γ) = c
√

1− 1/γ2. The speed as a
function of f is hence:

v(f) = c
√

1− 1/(1 + (1− f)/f)2 = c
√

1− f2. (2)

1Whether dark matter or only baryonic matter is usable as mass-energy to the civilization
does not play a role in the argument, but may be important for post-settlement activity.
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Neatly, the speed (as a fraction of c and function of f) is a quarter circle.

2.1 Simple constraints

There is a minimum probe mass, required in order to slow down the payload2 at
the destination. Using the relativistic rocket equation we get the requirement

m ≥ mpayloade
tanh−1(v/c). (3)

The multiplicative factor is 3.7 for γ = 2, 5.8 for γ = 3 and 19.9 for γ = 10.
Note that this assumes a perfect mass-energy photon rocket (Isp/c = 1).

For less effective rockets such as fusion rockets (Isp/c = 0.119) or fission rockets

(Isp/c = 0.04) the mass requirements are far higher, m ≥ mpayloade
(c/Isp) tanh

−1(v/c).
There is a trivial bound N ≤ R/mpayload, corresponding to the smallest,

slowest and most numerous possible probes (which would require external slow-
ing, for example through a magsail or Hubble expansion).

Another trivial constraint is that f is bounded by N = 1, that is, f ≥ m/R.
Hence the highest possible speed is

vN=1 = c
√

1− (m/R)2, (4)

when all resources are spent on accelerating a single probe.

2.2 Expanding across the universe

Given an energy budget, how should probes be allocated to distance to reach
everything as fast as possible? Here ”as fast as possible” means minimizing the
maximum arrival time.

Most points in a sphere are closer to the surface than the center: the average
distance is a = (3/4)r. In co-moving coordinates the amount of matter within
distance L grows as L3. Hence most resources are remote. This is limited by
access: only material within dh ≈ 5 Gpc can eventually be reached due to the
expansion of the universe, and only gravitationally bound matter such as some
superclusters (typically smaller than 20 Mpc [4]) will remain cohesive in future
expansion.

Given the above, reaching the surface of the sphere needs to be as fast as
possible. If interior points are reached faster, that energy could be reallocated
to launching for the more distant points, so hence the optimal (in this sense)
expansion reaches every destination at the same time.

In the simple non-expanding universe case the necessary velocity of an in-
dividual probe aimed at distance r is v(r) = βcr/dh, where β is the maxi-
mal fraction of lightspeed possible due to other constraints. This corresponds
to γ(r) = 1/

√
1− k2r2 where k = β/dh. The total kinetic energy for send-

ing probes to the entire sphere is Etotal =
∫ dh
0

4πr2ρd(γ(r) − 1)mc2dr where
ρd = 3fR/4πmd3h denotes the destination density of the N probes (assumed to
be constant throughout the sphere). Expanding,

Etotal = 4πρdmc
2

∫ dh

0

r2
(

1√
1− k2r2

− 1

)
dr

2Potential mpayload mentioned have been 500 tons, 30 grams, or 8 · 10−7 grams [2].
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Figure 1: Plot of f as a function of β under the requirement that Etotal = E. Points
under the curve represents feasible choices.

=
fRc2

2β3

[
3 sin−1(β) +

3(β3 − β)√
1− β2

− 2β3

]
(5)

The bracket represents the geometric part of the distribution. The dh’s cancel,
since the expression only distributes the N probes; a settlement program trying
to reach the entire volume would aim for N = fR/m ∝ d3h.

The highest value of β compatible with having E = R(1 − f)c2 Joules of
energy to accelerate can be found by equating the Etotal with E and expressing
it as a function of f . The result is an arc descending from β = 0, f = 1
to β = 1, f = 2/(3π − 2) ≈ 0.2694, independent of m (figure 1). Assuming
f = 0.2694 gives γ = 1/f = 3.7. Building more or heavier probes (higher f)
than this curve leaves less energy to power them than is needed for the intended
β.

If remote destinations are more important to reach early than nearby ones
(or Hubble expansion is a major factor), then a nonlinear velocity distribution
v(r) = βc(r/dh)α with α > 1 would ensure faster arrival at the frontier. The
overall effect is to reduce the overall energy demand (roughly as 1/α), since the
average velocity is lower. The extra energy can of course be allocated to increase
β to 1, but beyond that it is likely rational to add γ to the interior probes.

2.3 Expansion of the universe

In an expanding universe an initial high velocity will be counteracted by the
expansion: in co-moving coordinates the initial velocity v0 declines as v0/a(t)
where a(t) is the cosmological scale factor. For a de Sitter universe (an approx-
imation to late cosmological eras in universes dominated by dark energy) this
goes as v(t) = v0e

−Ht. The distance traversed behaves as s(t) = (v0/H)(1 −
e−Ht), and the arrival time at distance L is tarrive = −(1/H) ln(1 − HL/v0).
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Figure 2: (Top) Maximum reachable co-moving distance when traveling at constant
co-moving speed or with a given initial velocity. Note that arrival occurs at t =∞ to
the right. (Bottom) Difference in conformal volume that can be settled between the
methods.

While this means a probe going sufficiently far does not have to use resources to
brake on arrival, it slows arrival times and causes a maximal reachable distance
v0/H.

If a probe were to re-accelerate halfway to its original speed it would arrive
at time t′arrive = −(2/H) ln(1 − HL/2v0) < tarrive. With more and more
waypoints the probe approaches a velocity v′ = v0 + (t/d) where t is the stop
time and d the average distance between stops. This term can be very small for
intergalactic d. The reachable distance scales as (v′/c)dh.

Numerical integration due to Stuart Armstrong using a realistic scale factor
a(t) shows that for probes moving at 0.5c a single acceleration launch can reach
1.24 · 109 pc, while an extra stop every billion years increases it to 2.31 · 109

(86% more) and the continuous limit is 2.36 · 109 (90% more). For 0.8c the
gains are 60% and 61% respectively; while an improvement, the upper limit
is set by the reachability horizon dh ≈ 4.71 · 109 pc corresponding to travel
at c. Plotting the reachability limits as a function of v0 (figure 2) shows the
lower bound of a single acceleration (blue) versus the upper bound of constant
reaccelerations (red). The reacceleration method gives the largest payoff in
terms of extra reachable volume for velocities near 0.8c; for extremely relativistic
probes stopping provides less benefit than for moderately relativistic probes.

This supplements the ”near foraging” approach in section 4.4, suggesting
that constructing way-points where local resources are used to boost long-range
travel is a rational strategy for long-range intergalactic settlement (within galaxy
clusters the expansion has negligible effects), assuming that other constraints
prevent ultrarelativistic velocities. Actual waypoint distances are going to be
affected by issues of where convenient mass-sources are available3 and how much

3The cosmic web suggests that distances on the order of void sizes (100 Mpc) may be
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sideways deviation acceptable.
It is worth noting that the resources needed are fairly modest, since only

one4 probe needs to be accelerated.

2.4 Summary of constraints

Together these bounds (plus the dust bound discussed in section 3.1 and heating
bound in section 3.2) produce a region of feasibility in the (v,m) plane, as shown
in figure 3.

For large values of f there is not enough energy to accelerate probes strongly.
As f decreases the main bounds for numerous and small probes are primarily the
deceleration bound (especially if photon rockets are not feasible) and possibly
dust/radiation (depending on astrophysical environment). Heavier probes are
strongly affected by the deceleration constraint, typically making the dust issue
irrelevant.

3 Dust and radiation

Traversing long distances makes the probes vulnerable to impacts with dust
grains and interstellar gas; the first produces an explosion, the second acts as a
high energy proton beam.

For a detailed analysis of these issues for a mildly relativistic probe (0.2c)
traveling to Alpha Centauri, see [11].

3.1 Dust

3.1.1 Individual dust grains

A probe of cross section area σ traversing a distance L will sweep out a volume
σL. If dangerous dust has density ρ, the probability of no impact during transit
is e−σLρ, and the required redundancy to ensure at least one probe reaches the
destination is ≈ eσLρ. This increases exponentially with a length scale set by
1/(σρ), see below.

The upper limit of survivable dust impacts depends on the maximum energy
impact that can be withstood, Elim. As an approximation, Elim must be lesser
than the total binding energy5 of the probe: Elim ≤ km. Hence, if a probe of
mass m needs to survive encountering a grain of size mdust it has to travel at a
speed below

γlim = 1 + km/mdustc
2. (6)

In reality the impact would generate a cone with initial opening angle 〈θ2〉 ∼
γ−2, widening as spallation products interacted with the probe; the volume
affected is hence smaller than the entire probe but potentially more strongly
affected. Various shielding configurations can be considered.

reasonable, although there are significant numbers of galaxies and stars in the voids.
4Or enough redundant probes to replenish expected losses on the next leg so that at least

one probe will arrive.
5For diamond k is about 800 kJ/mol, or 66 MJ/kg. This is likely near the upper limit for

molecular matter.
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Figure 3: Illustration of the basic constraints for interstellar or intergalactic probes.
Here mpayload = 30 g, R = 7 · 1022 kg (lunar mass), f = 0.65 (selected arbitrarily)
and mdust = 2.5 · 10−9 kg (plausible common navigational hazard dust). The red
line indicates the maximum speed the probes can be accelerated to given the existing
energy budget. As f increases the energy constraint moves left; it can be moved right
by launching fewer probes. The blue curve indicates the slowdown constraint for an
ideal rocket; dashed blue curves represent weaker, more realistic engines. The purple
curve indicates where dust collisions have energy enough to disrupt all bonds in the
probe; the dashed purple curve is 10% of this energy. The yellow curve indicates
the constraint of keeping the probe under 1800K, assuming a cylindrical shape with
radius 1 meter. The green curve represents the constraint of sending at least one
probe. The black dashed curves indicate the number of probes needed for reaching
different numbers of destinations.
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3.1.2 Dust size distributions

The total interstellar dust density is about ρtotal ≈ 6.2 · 10−24 kg/m3. While
the typical interstellar dust particle diameter is below 0.1µ and has mass on
the order of 10−15 kg, there is a potential tail of heavier gravel. The Purcell
theory of dust extinction suggests that very large > 10µm grains (mdust > 10−11

kg) cannot contribute much mass, and the MRN distribution also assumed an
upper cut-off at 0.25µm. Using these cut-offs make γlim essentially irrelevant
compared to the deceleration constraint. However, recent results suggest that
the tail may be heavier than expected [7].

Considering interstellar objects (asteroids, comets etc) larger than 1 km,
various estimates of number densities range from 10−10 to 10−3 per cubic AU
(with the lower estimates dominating recently) [8]. Assuming a number density
10−4 per cubic AU and a cross section of 3.1 · 106 square meters gives a impact
risk of 1.4 · 10−19 per AU, making the mean free path far longer than the width
of the galaxy. Even the most dense estimate in [8], 5.4 · 10−2 per cubic AU,
gives a negligible risk.

However, assuming a diameter power law distribution a−α implies a total
cross section of σ(a) = σ(1km)(a/1km)−α+2. For asteroids, estimates of α
range from 2.3 to 3.5. The uncertainties are partially due to measurements on
different subpopulations, where the upper value is the equilibrium distribution
for fragmentation processes. Accepting this somewhat doubtful model gives a
risk of 10−18 to 10−15/AU for 1 meter objects, 2 ·10−18 to 10−13 for 0.1 meter/1
kg objects, and starts to become a navigation hazard over interstellar distances
only if there is a sizable fraction of mass in the 0.1 mm range or below. This dust
mass is, however, also likely within the range that can be shielded (as above),
assuming a modest γ.

The largest dust grain expected to hit during a long flight when N grains
distributed as a−α are encountered scales as amax ∝ N1/(α−1). For α in the
2.3-3.5 range this implies a scaling as N0.4 to N0.76. Hence a probe designed for
a trip through the entire plane of the Milky Way should expect grain diameters
between 7,000 and 2 · 107 times the median grain encountered over 1 AU.

3.1.3 Redundancy

In order to reach the destination with high probability enough probes must be
sent so that at least one arrives: N > eσLρ. This produces a constraint

f/m > eσLρ/R. (7)

This constraint is relatively binary: either there is enough resources or a suffi-
ciently safe trip to do it with few probes and probes can be made very large,
or the risk is so high that the probes must be made as small and redundant as
possible (f ≈ 1,m ≈ 0). Intermediate cases require fine tuning of the parame-
ters.

Another simple model of speed-related risk would take the rate of failure to
be proportional to γδ, where δ ≥ 1. The probability of surviving distance d

is e−kdγ
δ

where k is a vulnerability constant. The characteristic distance that
could be traveled without extreme redundancy is dsafe = 1/kγδ, or conversely,
the safe speed for going the distance would be γsafe = (kd)−1/δ. The arrival
time d/v would scale nearly linearly with distance until close to dsafe, where

8



it has a singularity and diverges. Hence the behavior is roughly binary in the
same way as the redundancy issue: there exists a (environment, construction
dependent) characteristic distance or speed beyond which requirements increase
without bound, but below it the requirements are fairly modest. Unfortunately
estimating k, δ requires fairly specific models of the probe and the environment.

3.2 Radiation

The radiation constraint is that the probe needs to survive incident high energy
radiation throughout the flight. Each cubic meter traversed will host about
600,000 protons. The probe will experience a proton kinetic energy irradiance
of

I(γ) = γ(γ − 1)ρc2v (8)

where ρ ≈ 10−21 kg/m3 is the interstellar gas density (which can be a few orders
of magnitude higher in gas clouds). The first γ factor is due to the time dilation
and the second the proton kinetic energy.

This is 4.6 ·104 W/m2 for γ = 2 (0.86c) and 1.5 ·105 W/m2 for γ = 3 (0.94c).
The exact damage depends in a nontrivial manner on the interaction with the
probe structure since the proton generates a particle shower that is slowed down
by the material and deposits its energy in the interior. Above γ = 1.3 pion
production from proton-proton collisions begin to occur, and above γ = 9.1
anti-protons are produced [6]. For modest γ a thick shield or deflection system
could in principle handle this6, but clearly there exists an upper limit where the
induced thermal vibrations7, secondary particles or broken bonds produce an
error cascade. This constraint is generally dominated by the dust constraint for
small probes.

The more exotic concerns due to interactions with the cosmic microwave
background discussed in [6] occur at significantly higher velocities than the
likely dust and radiation limits. Above γ = 108 CMB photons induce pair
production, and the viscous drag force due to scattering the photons becomes
significant.

4 Racing for the universe

What if there are two groups starting at t = 0, r = 0, attempting to claim as
much as possible of the surrounding universe?

4.1 Trivial case

In the simplest case of two groups with different resources R1, R2 the trivial
answer is that the group with the most resources wins. They simply send
probes of the same mass to the same destinations as the other, but use the
extra resources to give them extra γ.

6Personal communication with Eric Drexler.
7The equilibrium temperature due to direct heating of a probe with front cross section S

and total radiating area A, assuming full absorption of proton energy, is T = [SI(γ)/σA]1/4

and scales as
√
γ. Geometry matters significantly: a cubical 1 meter probe reaches the melting

temperature of iron 1800 K at γ = 12.2, while a 1 meter cylinder probe with 1 cm2 cross section
can go up to γ = 96.
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4.2 Strategy

A strategy shift would be to send fewer but faster probes: the less resource-
rich group could aim for a few desirable targets, giving up enough probes in
favor of speed to ensure first arrival. Clearly, if the other group knew this
they could perform the same reallocation and still win (although at the price
of not getting all intended targets, at least at first). This demonstrates that
information asymmetries and randomized strategies are going to be important.

The various speed limits discussed earlier imply that the fewer but faster
probe strategy has a limit speed: once probes are at the limit, neither side
has any advantage. At this point launching might just be a gamble that one’s
probe arrives faster or that the competitor suffers a failure in transit. This may
actually motivate groups to launch probes with fairly high probability of mission
failure. The high-resource group can force the low-resource group to use risky
probes/targets, while themselves using excess resources to settle guaranteed
targets. This issue also makes launching first more tempting (but see below).

As noted in [2, 3] it is possible to permanently outrun others if one can settle
beyond the reachability horizon for the other group. This can occur even for
lower expansion velocities if there is enough of a spatial or temporal head-start.

4.3 Acceptable delays in competition

If the travel occurs over distance L from the origin at speed v1, a ship launched
with delay d and speed v2 > v1 will arrive faster if L/v1 > d+L/v2. It is hence
rational to delay in order to get faster speed if

L

(
1

v1
− 1

v2

)
> d. (9)

Over L ≈ 109 ly hence differences in v on the order of 10−9 are worth waiting
one year for, if traveling at c-like speeds. This remains approximately true for
much smaller v, with longer delays acceptable.

Hence it can be rational for a group belonging to a technologically immature
species to delay launching if they expect their technology to advance significantly
in the future [10]. Conversely, a competing group with more resources would
be irrational in launching early unless they calculate that the speed gains from
further technology will be smaller than their resource advantage. This might
imply that rational competing groups will wait to launch until their species
reaches technological maturity, in which case the trivial case above applies. Since
that disfavors the weaker group, stealthy early launching may be desirable.

4.4 Near-far strategy

What if group 1 launches far, while group 2 launches for nearby resources, takes
control over them and then launches far? The amount of new resources that
can be reached in time t is R2(t) = (4π/3)ρRv

3
2t

3 (here ρR denotes resource
density). Assuming the launch of an equal number N of far probes as group
1, they get γ(t) = 1 + R2(t)/Nm, allowing a faster speed v′2(t). This ignores
the probe mass cost, assuming it to be negligible compared to the large energy
gains. We will also assume the size of v2t is small compared to d so we can treat
it as being essentially at distance d from the ultimate destinations.
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Figure 4: Effect of the near-far strategy. Group 1 (red) has 80% of the initial resources
of a solar system and use it to reach a destination 200 ly away in 240 years by going
at 0.83c. Group 2 can only move at 0.55c and would arrive after 361 years, but if
it gathers resources (0.004 solar systems worth per cubic lightyear) for a time before
pooling the resources for a dash towards the destination it can reach it in 214 years.
Note that gathering resources for less than 7 years will not be enough to beat group
1, while spending more than 40 years gives it too much of a head start.

In order to overtake group 1, group 2 needs v′2 so that t+ d/v′2 < d/v1. The
left hand side can be expanded into

T (t) = t+ (d/c)
1 + kt3√
kt3(kt3 + 2)

(10)

where k = (4πρv32/3Nm). T (t) has a vertical asymptote as t = 0 and a 45
degree asymptote for large t; in between there is a minimum defined by the
solution of a sixth degree polynomial (See figure 4).

Overall, the resource gathering strategy wins out over longer distances: even
a relatively short (t � d/v1) local expansion enables a high enough speed to
arrive well before the competitor (figure 5). If the number of probes that need to
be sent are large this slows down the necessary time, but the effect is relatively
soft. A defeater may be if the time tu required to utilize the resources is long;
in this case ctu acts as a horizon for the strategy8.

Note that this situation represents a major strategic mistake of group 1,
since they could also launch faster probes at the same nearby sites, claim them
and then launch far.

Given the advantage of resource-gathering, even in non-competitive situa-
tions it is rational for a species to perform an initial expansion to add extra
speed. The limit of this mainly depends on the dust velocity limit: once enough
material has been gathered to reach this velocity extra resources have limited

8In [2] we estimated tu ≈ 40 years.
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Figure 5: Time gain from resource gathering for different values of group 1 advantage
(R1) and group 2 resource gathering time for a race 200 lightyears long (left) or 2
million lightyears (right). Colors denote the number of years ahead of group 1 group
2 will arrive.

utility. The dust limit depends on the probe mass ((c − vdust)/c ∝ 1/m2) so
in principle an arbitrary amount of resources could be used to construct ever
faster, ever more heavily shielded probes. However, other technical issues such
as the radiation problem and even drag from the CMB [6] place some eventual
limit on achievable velocities. Given a limiting γlim, the volume that needs to
be harvested is

rlim =

(
3Nm(γlim − 1)

4πρR

)1/3

. (11)

Even for the extreme γlim = 108 case for CMB-induced pair production in [6]
this radius is just 464 times the radius needed to launch probes at γ = 2, which
we know is within the resources of the solar system [2].

5 Racing the aliens

Assuming other civilizations appear at some rate λ per spacetime volume (simi-
lar to the model in [5]), the amount of colonized space grows as ≈ ct3 until time
≈ (0.5/c)λ−1/3, when they start to overlap9. The distribution of colonization
times for sites is roughly gamma-distributed∝ tk−1e−t/θ where k ≈ 6.2, θ ≈ 0.11
for λ = 1. Hence the rational strategy for pre-emptively colonizing space if λ
is known is to focus on colonizing at distances on the order of λ−1/3 since this
is where most of the available resources will be located (closer, and they are
likely to be unclaimed but small, further away and they are likely to have been
claimed at arrival).

If the civilization has a prior10 f(λ) the distribution of priority colonization
distances is h(r) = f(r−3)/r4. If f(λ) ∝ 1/λ (log-uniform and scale free) then

9The median of the distance to the nearest neighbour in a 3D Poisson distribution of
points is (3 ln(2)/4π)1/3λ−1/3 ≈ 0.54901λ−1/3 and the mean is (3/4π)1/3Γ(4/3)λ−1/3 ≈
0.55396λ−1/3.

10As noted by [5], if civilizations pre-empt each other, an extant civilization has anthropic
evidence that λ cannot be very high (at least for fast expanders).
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h(r) ∝ 1/r too. For a Gaussian f the behavior is similar to an inverse Gamma
distribution: very low probability for nearby distances, a very fast rise to the
mode, and a power-law tail for remote sites.

Note that there exist a distance cut-off due to the accelerating expansion of
the universe: for sufficiently low λ there is no worry about pre-emption since
the meeting distance is larger than the reachability horizon. This occurs when
λ < (4π/3)/d3h.

5.1 Conclusions

Attempting to reach as far and fast as possible is subject to the following con-
straints:

• Using more resources for acceleration produces a quadratic limit of speed,

vresources ≤ c
√

1− f2.

• Given a payload mass the probe mass must be within

mpayloade
(c/Isp) tanh

−1(v/c) ≤ m ≤ R.

• At least one probe needs to be sent, inducing a resource-set speed limit

vN=1 ≤ c
√

1− (m/R)2.

• Interstellar dust creates a speed limit favoring heavier probes,

vdust ≤ c
√

1− 1/(1 + km/mdustc2)2.

• Radiation damage and heating becomes a problem for molecular matter
probes at a few γ’s.

• Redundancy requirements favors more probes, but depending on distance
traversed either is a strong limit forcing very cheap probes or is a weak
limit not constraining probe mass much.

f/m ≥ eσLρ/R.

• Allocating more energy to reach remote destinations induces a constraint
f < f(β) on the fraction of mass used for probes.

• Early delays are acceptable as long as the speed increment times the dis-
tance is larger.

d(1/v − 1/(v + ∆v)) > tdelay.

Among competing technologically mature groups starting from the same
location and time the group with the most resources wins, unless it is sur-
prised. It is rational to do an initial resource-harvesting near settlement step
to gather energy for faster travel to sufficiently remote destinations. Intermit-
tent resource-harvesting during very long trips is rational for relativistic but not
ultra-relativistic travel.
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The distance to reach for depends on expected civilization density. If it
is assumed to be zero, the extreme limit is the reachability horizon. If other
civilizations are expected their density sets an optimal distance. If the density
is uncertain a probabilistic strategy favors allocating resources in a power-law
fashion out to the reachability horizon.

The number of targets an advanced civilization may want to reach are on
the order of N = 1010 (stars in the galaxy), 1015 (in a supercluster), or 1022

(in reachable universe). For γ = 3.7 probes of mass m the total mass-energy
resources needed to launch R probes to each target is γNRm; a solar system
worth of resources is enough for Rm ≈ 5.4 · 1019 probe-kilograms towards the
galaxy, 5.4 · 1014 towards a supercluster, and 5.4 · 106 towards the reachable
universe.

The amount of resources required for the maximum feasible speed may be

significant, but the scaling of the harvesting volume is r ∝ γ
1/3
lim. This means

that the total amount of resources used for powering the speed of the expansion
is very small compared to the size of space that can be reached. Using very
large numbers of probes can in principle eat up any amount of resources, but
this is only rational (1) if one is trying to breach the redundancy constraint, (2)
are in a competitive situation at the speed limit and trying to win by gambling
(probes as ”lottery tickets” with a win probability R1/R2).

While this report does not support the view that large-scale space settlement
will lead to the waste of significant resources, it does not follow that settlement is
so innocuous that it can be allowed to happen in any form. When occurring over
large distances the ability to enforce coordination disappears, and this means
that if no or bad ground rules were established before causal contact was lost
there can be major waste. As argued in [9], most value of the resources in the
universe resides in using them in the far future: using up resources too early
can lose a factor of 1030. Early conflicts or incentives to use resources before
the late eras can lead to massive losses.
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